4.7 Article

Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 79, Issue 8, Pages -

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-022-04497-7

Keywords

Splicing code; Actin-binding; Focal adhesion; Heart; Differentiation

Funding

  1. Lund University
  2. Swedish Research Council VR [2020-00908, 2018-02635]
  3. Heart-Lung Foundation [20200222]
  4. Royal Physiographic Society [F 2022/207]
  5. NIH [R01 HL142971-A1]
  6. VA MERIT award [BX004443]
  7. Wellcome Trust [209368/Z/17/Z]
  8. Wellcome Trust [209368/Z/17/Z] Funding Source: Wellcome Trust
  9. Swedish Research Council [2018-02635, 2020-00908] Funding Source: Swedish Research Council
  10. Swedish Heart-Lung Foundation [20200222] Funding Source: Swedish Heart-Lung Foundation
  11. Formas [2020-00908] Funding Source: Formas

Ask authors/readers for more resources

The study reveals the association between MYOCD and four splicing factors, which are involved in the control of SMC-specific alternative exon usage and splicing. RNA-sequencing and analysis demonstrate that MYOCD contributes to the regulation of transcript diversity through alternative exon usage and splicing, playing a critical role in SMC differentiation.
Differentiation of smooth muscle cells (SMCs) depends on serum response factor (SRF) and its co-activator myocardin (MYOCD). The role of MYOCD for the SMC program of gene transcription is well established. In contrast, the role of MYOCD in control of SMC-specific alternative exon usage, including exon splicing, has not been explored. In the current work we identified four splicing factors (MBNL1, RBPMS, RBPMS2, and RBFOX2) that correlate with MYOCD across human SMC tissues. Forced expression of MYOCD family members in human coronary artery SMCs in vitro upregulated expression of these splicing factors. For global profiling of transcript diversity, we performed RNA-sequencing after MYOCD transduction. We analyzed alternative transcripts with three different methods. Exon-based analysis identified 1637 features with differential exon usage. For example, usage of 3 ' exons in MYLK that encode telokin increased relative to 5 ' exons, as did the 17 kDa telokin to 130 kDa MYLK protein ratio. Dedicated event-based analysis identified 239 MYOCD-driven splicing events. Events involving MBNL1, MCAM, and ACTN1 were among the most prominent, and this was confirmed using variant-specific PCR analyses. In support of a role for RBPMS and RBFOX2 in MYOCD-driven splicing we found enrichment of their binding motifs around differentially spliced exons. Moreover, knockdown of either RBPMS or RBFOX2 antagonized splicing events stimulated by MYOCD, including those involving ACTN1, VCL, and MBNL1. Supporting an in vivo role of MYOCD-SRF-driven splicing, we demonstrate altered Rbpms expression and splicing in inducible and SMC-specific Srf knockout mice. We conclude that MYOCD-SRF, in part via RBPMS and RBFOX2, induce a program of differential exon usage and alternative splicing as part of the broader program of SMC differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available