4.5 Article

Delayed onset, immunomodulation, and lifespan improvement of SOD1G93A mice after intravenous injection of human mesenchymal stem cells derived from adipose tissue

Journal

BRAIN RESEARCH BULLETIN
Volume 186, Issue -, Pages 153-164

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.brainresbull.2022.06.008

Keywords

Astrogliosis; Microglial reaction; Synaptic coverage; ALS; SOD1

Categories

Funding

  1. Sa?o Paulo Research Foundation-FAPESP [2018/05006-0, 2013/16168-8]
  2. National Council for Scientific and Technological Development (CNPq) [303085/2017-7]

Ask authors/readers for more resources

This study confirms the therapeutic potential of human mesenchymal stem cells (hMSCs) from adipose tissue in SOD1G93A transgenic mice. Treatment during the asymptomatic phase resulted in increased neuronal survival and reduced neurodegeneration.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective and progressive loss of motor neurons from the spinal cord, brain stem, and motor cortex. Although the hallmark of ALS is motor neuron degeneration, astrocytes, microglia, and T cells actively participate. Pharmacological treatment with riluzole has little effect on the lifespan of the patient. Thus, the development of new therapeutic strategies is of utmost importance. The objective of this study was to verify whether human mesenchymal stem cells (hMSCs) from adipose tissue have therapeutic potential in SOD1G93A transgenic mice. The treatment was carried out in the asymptomatic phase of the disease (10th week) by a single systemic application of ad-hMSCs (1 x105 cells). The animals were sacrificed at the 14th week (the initial stage of symptoms) or the end-stage (ES) of the disease. The lumbar spinal cords were dissected and processed for Nissl staining (neuronal survival), immunohistochemistry (gliosis and synaptic preservation), and gene transcript expression (qRT-PCR). Behavioral analyses considering the onset of disease and its progression, neurological score, body weight, and motor control (rotarod test) started on the 10th week and were performed every three days until the ES of the disease. The results revealed that treatment with ad-hMSCs promoted greater neuronal survival (44%) than vehicle treatment. However, no effect was seen at the ES of the disease. Better structural preservation of the ventral horn in animals treated with adhMSCs was observed, together with decreased gliosis and greater synapse protection. In line with this, we found that the transcript levels of Hgf1 were upregulated in ad-hMSCs-treated mice. These results corroborate the behavioral data showing that ad-hMSCs had delayed motor deficits and reduced weight loss compared to vehicle animals. Additionally, cell therapy delayed the course of the disease and significantly improved survival by 20 days. Overall, our results indicate that treatment with ad-hMSCs has beneficial effects, enhancing neuronal survival and promoting a less degenerative neuronal microenvironment. Thus, this may be a potential therapy to improve the quality of life and to extend the lifespan of ALS patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available