4.6 Article

CARE 2.0: reducing false-positive sequencing error corrections using machine learning

Journal

BMC BIOINFORMATICS
Volume 23, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12859-022-04754-3

Keywords

Next-generation sequencing; Error correction; Machine learning

Funding

  1. Projekt DEAL

Ask authors/readers for more resources

This article presents CARE 2.0, a context-aware read error correction tool based on multiple sequence alignment for Illumina datasets. With the use of new optimizations and a classifier based on random decision forests, CARE 2.0 reduces false-positive corrections significantly and achieves high numbers of true-positive corrections. The results demonstrate the applicability of CARE 2.0 in improving k-mer analysis and de novo assembly with real-world data.
Background: Next-generation sequencing pipelines often perform error correction as a preprocessing step to obtain cleaned input data. State-of-the-art error correction programs are able to reliably detect and correct the majority of sequencing errors. However, they also introduce new errors by making false-positive corrections. These correction mistakes can have negative impact on downstream analysis, such as k-mer statistics, de-novo assembly, and variant calling. This motivates the need for more precise error correction tools. Results: We present CARE 2.0, a context-aware read error correction tool based on multiple sequence alignment targeting Illumina datasets. In addition to a number of newly introduced optimizations its most significant change is the replacement of CARE 1.0's hand-crafted correction conditions with a novel classifier based on random decision forests trained on Illumina data. This results in up to two orders-of-magnitude fewer false-positive corrections compared to other state-of-the-art error correction software. At the same time, CARE 2.0 is able to achieve high numbers of true-positive corrections comparable to its competitors. On a simulated full human dataset with 914M reads CARE 2.0 generates only 1.2M false positives (FPs) (and 801.4M true positives (TPs)) at a highly competitive runtime while the best corrections achieved by other state-of-the-art tools contain at least 3.9M FPs and at most 814.5M TPs. Better de-novo assembly and improved k-mer analysis show the applicability of CARE 2.0 to real-world data. Conclusion: False-positive corrections can negatively influence down-stream analysis. The precision of CARE 2.0 greatly reduces the number of those corrections compared to other state-of-the-art programs including BFC, Karect, Musket, Bcool, SGA, and Lighter. Thus, higher-quality datasets are produced which improve k-mer analysis and de-novo assembly in real-world datasets which demonstrates the applicability of machine learning techniques in the context of sequencing read error correction. CARE 2.0 is written in C++/CUDA for Linux systems and can be run on the CPU as well as on CUDA-enabled GPUs. It is available at https://github.com/fkallen/CARE.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available