4.8 Article

Ni single atoms anchored on N-doped carbon nanosheets as bifunctional electrocatalysts for Urea-assisted rechargeable Zn-air batteries

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 310, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121352

Keywords

Oxygen reduction reaction; Urea oxidation reaction; Single atom catalysts; Bifunctional activity; Zn-air batteries

Funding

  1. General Research Fund [CityU 11308120, CityU 11307619]
  2. National Natural Science Foundation of China [51872249, 52172241]

Ask authors/readers for more resources

In this study, a bifunctional electrocatalyst composed of individually dispersed Ni single atoms on N-doped carbon nanosheets (Ni SAs-NC) was synthesized and demonstrated to exhibit outstanding performance for both oxygen reduction reaction (ORR) and urea oxidation reaction (UOR). By coupling ORR with UOR of low thermodynamic potential, a urea-assisted rechargeable Zn-air battery (ZAB) with significantly decreased charging voltage and high urea elimination rate was achieved. The high bifunctional electrocatalytic activities of Ni SAs-NC resulted in a dramatically increased energy conversion efficiency of 71.8%, improving conventional ZABs by 17.1%. This successful implementation of Ni SAs-based urea-assisted ZABs with improved energy conversion efficiency may advance practical applications of ZAB technology.
The sluggish kinetics of oxygen electrode reactions is a bottleneck for the development of rechargeable Zn-air batteries (ZABs). Herein, we report a bifunctional electrocatalyst synthesized by anchoring individually dispersed Ni single atoms on N-doped carbon nanosheets (Ni SAs-NC), which exhibits an outstanding overall performance for oxygen reduction reaction (ORR) and urea oxidation reaction (UOR). Based on that, a conceptual urea-assisted rechargeable ZAB by coupling ORR with UOR of a low thermodynamic potential is demonstrated to have significantly decreased charging voltage and high urea elimination rate. The high bifunctional electrocatalytic activities of Ni SAs-NC endow the urea-assisted ZAB with a dramatically increased energy conversion efficiency of 71.8%, which is improved by 17.1% as compares with the conventional ZABs. The successful implementation of Ni SACs based urea-assisted rechargeable ZABs with an improved energy conversion efficiency may prompt ZAB technology towards practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available