4.8 Article

Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 310, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121326

Keywords

Z-scheme heterojunctions; DFT theoretical; Fe-N-4 sites; Spin state; Degradation

Funding

  1. Natural Science Foundation of China [51908213, 52160001, 51908214, 61872141]
  2. Program of Major Disciplines, Academic and Technical Leaders of Jiangxi Province [20204BCJL23038]
  3. Natural Science Foundation of Jiangxi Province [20212ACB204003, 20201BBE51020]
  4. State Key Laboratory of Pollution Control and Resource Reuse Foundation [PCRRF21028]

Ask authors/readers for more resources

In this study, a Fe-g-C3N4/Bi2WO6 Z-scheme heterojunction was elaborately designed for the degradation of tetracycline (TC). The performance of H2O2 decomposition in the Z-scheme heterojunction was improved by the doping of iron, enhancing the transportability of photogenerated electrons and facilitating the spread of radicals. The study also found that O-1(2) and center dot O-2- were the main active species participating in the degradation process, according to efficacy analyses and experimental results.
Herein, Fe-g-C3N4/Bi2WO6 Z-scheme heterojunction is elaborately designed to build a photo-Fenton system for the degradation of tetracycline (TC). In this study, the H2O2 decomposition performance of the Z-scheme heterojunction has been improved due to the doping of iron, improve photogenerated electrons transportability and facilitate spread of radicals, according to the efficacy analyses, and trapping experiment, ESR analysis as well as degradation pathways of TC. Moreover, DFT theoretical results suggest that the Z-scheme transfer route coupled with the generated photo-Fenton process builds a Z-scheme-charge-transfer platform for remarkable degradation of emerging pollutants, and the formation of Fe-N4 sites induces a spin polarization of the material and also introduces a defect state in the original forbidden band, which leads to extremely activity for the removal of TC in the photo-Fenton system. The study shows that O-1(2) and center dot O-2- are the main active species participating in the degradation process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available