4.8 Article

A comparison of SMX degradation by persulfate activated with different nanocarbons: Kinetics, transformation pathways, and toxicity

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 310, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121345

Keywords

Persulfate; Carbon nanotubes; Nanodiamond; Toxicity; Degradation pathways

Funding

  1. National Natural Science Foundation of China [51908270, 52125002]
  2. Natural Sci-ence Foundation of Jiangxi Province [20212ACB213006]
  3. National Key Research and Development Program of China [2019YFC1907900]

Ask authors/readers for more resources

This study compares the oxidation differences of sulfamethoxazole (SMX) by carbon nanotube (CNT)/peroxymonosulfate (PMS), nanodiamond (ND)/PMS, and PMS direct oxidation systems. The results showed that the reaction rate constant of the CNT/PMS system is significantly higher than the ND/PMS and PMS direct oxidation systems. Product analysis revealed differences in the oxidation mechanism and products among the different oxidation systems. Therefore, the choice of carbon catalyst plays a crucial role in the degradation and toxicity of organic pollutants in wastewater treatment.
Nanocarbon-based advanced oxidation processes (AOPs) are widely used in wastewater purification. However, the properties of different carbon catalysts lead to differences in the organic degradation mechanism and toxicity of wastewater treatment. Herein, this study provides insight into the differences between the oxidation of sulfamethoxazole (SMX) by carbon nanotube (CNT)/peroxymonosulfate (PMS), nanodiamond (ND)/PMS and PMSalone systems. The pseudo-first-order reaction constant of the reaction of the SO4 center dot--dominated CNT/PMS system with SMX is 19-fold and 30-fold higher than those of the 1O2-dominated ND/PMS system and PMS direct oxidation system at pH= 7, respectively. In addition, density functional theory (DFT) calculations and product analysis show that SO4 center dot- mainly attacks the aniline and sulfonyl groups, while oxidation of the aniline group is the dominant mode of PMS direct oxidation and 1O2 reactivity. The formation of nitro and nitroso byproducts after SMX degradation determines the toxicity difference, and the CNT/PMS system is even more advantageous.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available