4.3 Article

Antibody-immunotoxin Conjugate Using FcBP-mediated Photoconjugation to Treat Cancer

Journal

ANTICANCER RESEARCH
Volume 42, Issue 7, Pages 3453-3461

Publisher

INT INST ANTICANCER RESEARCH
DOI: 10.21873/anticanres.15832

Keywords

c-Kit; antibody-drug conjugate; FcBP; immunotoxin; cancer

Categories

Ask authors/readers for more resources

In this study, the authors developed 2G4 immunotoxins as an alternative therapeutic strategy for microtubule inhibitor-resistant cancer cells. The immunotoxins efficiently induced cytotoxicity in c-Kit-positive cells by inhibiting protein synthesis, leading to a significant inhibition of tumor growth in vivo.
Background/Aim: Cytotoxic payload conjugation to antibodies efficiently suppresses tumors and contributes to the improvement of cancer survival. In our previous study, c-Kit targeting antibody-drug conjugate (2G4-DM1) with DM1, a microtubule inhibitor, efficiently suppressed tumor growth. However, slow-growing c-Kit-positive tumors, such as GIST-48, did not efficiently respond to DM1. In this study, we aimed to treat tumors using 2G4 immunotoxin with Pseudomonas exotoxin A (PE) as a payload. Materials and Methods: Modified FcBP-PE24 containing p-benzoyl-L-phenylalanine, unnatural amino acid, was expressed in E. coli and purified. Then, photoconjugation of 2G4 antibody and FcBP-PE24 at 365 nm was carried out and 2G4 immunotoxin was purified using anion exchange chromatography. In vitro cytotoxicity of 2G4 immunotoxins was assessed in HMC-1.2, GIST-48, and MDA-MB-453 cells. Then, in vivo efficacy analysis was performed using C.B-17 SCID mice. Results: 2G4 immunotoxin efficiently induced cytotoxicity in 2G4-DM1-resistant HMC-1.2 and GIST-48 cells by inhibiting protein synthesis but not in c-Kit-negative MDA-MB-453 cells. The results showed similar to 200-fold or more increase in cytotoxicity against c-Kit-positive cells compared to IC50 of 2G4-DM1. In addition, 2G4 immunotoxin suppressed tumor growth in the in vivo xenograft mouse model. Conclusion: 2G4 immunotoxins could be an alternative therapeutic strategy for microtubule inhibitor-resistant cancer cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available