4.8 Article

Central Unit Fluorination of Non-Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Simple Nonfused-Ring Electron Acceptors with Noncovalently Conformational Locks for Low-Cost and High-Performance Organic Solar Cells Enabled by End-Group Engineering

Congqi Li et al.

Summary: The development of nonfused-ring electron acceptors (NREAs) as a promising candidate for organic solar cells (OSCs) is presented in this paper. A novel series of NREAs-II are constructed to explore their impact on device performance, demonstrating their potential for low-cost and high-performance OSCs.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination

Kaien Chong et al.

Summary: This work demonstrates highly efficient polymer solar cells by improving charge extraction and suppressing charge recombination through side-chain engineering, adopting ternary blends, and introducing volatilizable solid additives. The optimized molecular structure and blend morphology lead to improved fill factor and power conversion efficiency.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Design of Near-Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for High-Performance Semitransparent Ternary Organic Solar Cells

Wuyue Liu et al.

Summary: Semitransparent organic solar cells (ST-OSCs) are important applications of organic solar cells, but the current high-performance ST-OSCs still lack a low enough optical band gap to achieve the optimal balance between power conversion efficiency and average visible transmittance. By designing and synthesizing a new acceptor SN and incorporating it into the PM6:Y6 system, the performance of the solar cells can be significantly improved.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Multidisciplinary

Non-fullerene acceptors with hetero-dihalogenated terminals induce significant difference in single crystallography and enable binary organic solar cells with 17.5% efficiency

Lai Wang et al.

Summary: The synthesis of two new hetero-dihalogenated terminals with a fluorine/chlorine or fluorine/bromine pair, along with three NFAs incorporating these terminals, led to the achievement of high-performance OSCs. The presence of a fluorine/chlorine hetero-dihalogenated terminal resulted in the most planar molecular geometry, shortest intermolecular packing distance, and largest pi-pi electronic coupling among the acceptors, leading to improved crystallinity, phase separation, charge mobility, and recombination for enhanced power conversion efficiency of up to 17.52%.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Physical

Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non-Fullerene Organic Solar Cells

Xiaohua Zhang et al.

Summary: In this study, the fluorination of the NFA end group was systematically investigated to understand how it affects the morphology and photovoltaic performance of the blend. The results showed that highly fluorinated NFA molecules can improve the BHJ morphology, enhance NFA-cathode contact, and enhance the photovoltaic performance of the OSC.

ADVANCED ENERGY MATERIALS (2022)

Article Chemistry, Physical

High fill factor organic solar cells with increased dielectric constant and molecular packing density

Xuning Zhang et al.

Summary: This study reveals the impact of dielectric properties on the fill factor and photovoltaic efficiency of organic solar cells. By increasing the molecular packing density and dielectric constant, the fill factor and efficiency can be improved.

JOULE (2022)

Article Chemistry, Multidisciplinary

12.42% Monolithic 25.42 cm2 Flexible Organic Solar Cells Enabled by an Amorphous ITO-Modified Metal Grid Electrode

Yunfei Han et al.

Summary: This study introduces a thin amorphous indium tin oxide (ITO) film (alpha-ITO) as a filler to improve the performance of metal grid electrode in flexible organic solar cells (OSCs). The alpha-ITO significantly enhances the bending resistance and long-term stability of the electrode, while also improving charge transporting efficiency.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes

Guang Zeng et al.

Summary: In this study, an ionic liquid (IL)-type reducing agent containing Cl- and a dihydroxyl group was used to control the reduction process of silver (Ag) in AgNW-based FTEs, achieving atomic-level contact between AgNWs and reduced Ag, thus improving the mechanical stability and optoelectronic properties of flexible FTEs.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Physical

Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology

Lei Zhu et al.

Summary: Morphological control of donor and acceptor domains is crucial for efficient organic photovoltaics, and this study demonstrates a double-fibril network strategy to achieve a high power conversion efficiency of 19.3%.

NATURE MATERIALS (2022)

Article Chemistry, Multidisciplinary

Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension

Hongbin Chen et al.

Summary: This research introduces a highly efficient electron acceptor, CH17, with enhanced molecular conjugation extension, leading to improved molecular packing and photovoltaic performance in organic solar cells.

SCIENCE CHINA-CHEMISTRY (2022)

Article Chemistry, Physical

Simultaneously Decreasing the Bandgap and Voc Loss in Efficient Ternary Organic Solar Cells

Yangjun Yan et al.

Summary: Ternary architecture is a promising strategy to enhance the performance of organic solar cells by reducing the bandgap of the active layer materials. This study introduces a small-molecule donor BTID-2F into a PM6:Y6 based system, resulting in a narrower bandgap and improved aggregation. The ternary devices display lower energy disorder and loss, leading to higher open-circuit voltage and enhanced power conversion efficiency.

ADVANCED ENERGY MATERIALS (2022)

Article Chemistry, Physical

Carrier Generation Engineering toward 18% Efficiency Organic Solar Cells by Controlling Film Microstructure

Yueling Su et al.

Summary: This study successfully manipulated the charge generation process in the active layer by controlling film microstructures, leading to improved efficiency in non-fullerene acceptor-based organic solar cells.

ADVANCED ENERGY MATERIALS (2022)

Article Chemistry, Physical

Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics

Lingling Zhan et al.

Summary: By constructing ternary organic photovoltaics, the open-circuit voltage (V-oc) loss is reduced, leading to a higher voltage without sacrificing the absorbing range. In addition, the ternary blend exhibits enhanced charge transport property and a higher fill factor.

JOULE (2022)

Article Chemistry, Applied

Non-fused medium bandgap electron acceptors for efficient organic photovoltaics

Tian-Jiao Wen et al.

Summary: Medium bandgap electron acceptors with fully non-fused structures and planar/rigid conformations have been developed for organic photovoltaics, achieving high power conversion efficiency and low non-radiative loss.

JOURNAL OF ENERGY CHEMISTRY (2022)

Article Chemistry, Physical

Noncovalent Interactions Induced by Fluorination of the Central Core Improve the Photovoltaic Performance of A-D-A′-D-A-Type Nonfused Ring Acceptors

Xia Zhou et al.

Summary: Nonfused ring acceptors (NFRAs) have shown promise in achieving high-efficiency organic solar cells (OSCs). This study synthesized two A-D-A'-D-A-type NFRAs and investigated the influence of fluorination on molecular packing and photovoltaic performance. The results showed that fluorinated compounds exhibited more ordered and compact stacking, leading to higher power conversion efficiency in solar cells.

ACS APPLIED ENERGY MATERIALS (2022)

Review Chemistry, Multidisciplinary

Effects of energetic disorder in bulk heterojunction organic solar cells

Jun Yuan et al.

Summary: Organic solar cells (OSCs) have made rapid progress in recent years through the development of novel organic photoactive materials, particularly non-fullerene acceptors (NFAs). However, the understanding of the interplay between molecular structure and optoelectronic properties lags significantly behind. The potential role of energetic disorder in OSCs has received little attention, but recent studies have shown that state-of-the-art NFA-based devices can achieve both low energetic disorder and high power conversion efficiency (PCE).

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

17.1 %-Efficient Eco-Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor

Hui Chen et al.

Summary: The performance of polymer solar cells processed by non-halogenated solvents was enhanced by designing and synthesizing a dissymmetric fused-ring acceptor BTIC-2Cl-gamma CF3, achieving a PCE of over 17% and showing significant advantages in storage and photo-stability, while extending the absorption peak to 852 nm.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Simple Non-Fused Electron Acceptors Leading to Efficient Organic Photovoltaics

Tian-Jiao Wen et al.

Summary: Despite recent progress, organic photovoltaics (OPVs) still need to work on balancing efficiency, stability, and cost. This study developed two non-fused electron acceptors which, when blended with a specific polymer, achieved the highest reported efficiency for fully unfused electron acceptors.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Energy & Fuels

Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells

Chao Li et al.

Summary: The molecular design of acceptor and donor molecules has significantly advanced organic photovoltaics. By introducing branched alkyl chains in non-fullerene acceptors, favorable morphology in the active layer can be achieved, leading to a certified device efficiency of 17.9%. This modification can completely alter the molecular packing behavior of non-fullerene acceptors, resulting in improved structural order and charge transport in thin films.

NATURE ENERGY (2021)

Article Chemistry, Multidisciplinary

A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency

Can Yang et al.

Summary: By using a dissymmetric backbone and selenophene substitution on the central core, symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors with varying numbers of selenophene were synthesized, leading to improved device performance and efficiency.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

18.77 % Efficiency Organic Solar Cells Promoted by Aqueous Solution Processed Cobalt(II) Acetate Hole Transporting Layer

Huifeng Meng et al.

Summary: A robust hole transporting layer (HTL) was successfully processed from Cobalt(II) acetate tetrahydrate precursor by thermal annealing (TA) and UV-ozone (UVO) treatments, achieving high work function and ideal charge extraction morphology. By optimizing the processing conditions, a record PCE of 18.77% was achieved with PM6 as the polymer donor and L8-BO as the electron acceptor, outperforming PEDOT:PSS-based solar cell devices.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Multidisciplinary Sciences

Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics

Shuixing Li et al.

Summary: The study conducted on four non-fullerene acceptors reveals how extended conjugation, asymmetric terminals, and alkyl chain length can affect device performance. Understanding correlations between molecular structures and macroscopic properties is critical in realizing highly efficient organic photovoltaics.

NATURE COMMUNICATIONS (2021)

Article Energy & Fuels

A unified description of non-radiative voltage losses in organic solar cells

Xian-Kai Chen et al.

Summary: Researchers provide a general description of non-radiative voltage losses and find that the latest organic solar cells based on non-fullerene acceptors can reduce this loss. The study shows that photoluminescence yield is a critical factor in determining the lower limit of non-radiative voltage losses.

NATURE ENERGY (2021)

Article Chemistry, Physical

Improving quantum efficiency in organic solar cells with a small energetic driving force

Haiqin Liu et al.

Summary: The study revealed that a small energetic difference between the local excited state and the charge transfer state leads to low voltage loss, but results in a low short-circuit current density. By adding a polymer donor (PBDB-T) with similar chemical structure to PM7 in the ternary solar cells, the efficiency of the charge transfer state dissociation can be significantly improved, while maintaining the low voltage loss property of PM7:Y5.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Multidisciplinary

A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5% Efficiency

Can Yang et al.

Summary: The synthesis of symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors (NF-SMAs) using a dissymmetric backbone and selenophene substitution on the central core leads to improved optical and electrical properties. Increasing the number of selenophene results in a red-shifted absorption, as well as larger electron mobility and crystallinity in the thin film. The combination of dissymmetric core and precise replacement of selenophene effectively enhances charge transport characteristics in binary polymer solar cells.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency

Yong Cui et al.

ADVANCED MATERIALS (2020)

Article Multidisciplinary Sciences

18% Efficiency organic solar cells

Qishi Liu et al.

SCIENCE BULLETIN (2020)

Article Chemistry, Multidisciplinary

A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells

Francis Lin et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Multidisciplinary

Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells

Zhenzhen Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Materials Science, Multidisciplinary

Recent advances of computational chemistry in organic solar cell research

Yongjie Cui et al.

JOURNAL OF MATERIALS CHEMISTRY C (2020)

Review Chemistry, Multidisciplinary

Acceptor-donor-acceptor type molecules for high performance organic photovoltaics - chemistry and mechanism

Xiangjian Wan et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Multidisciplinary

Molecular design of a non-fullerene acceptor enables aP3HT-based organic solar cell with 9.46% efficiency

Chenyi Yang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells

Flurin D. Eisner et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Physical

Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses

Yuming Wang et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Multidisciplinary

A New Nonfullerene Electron Acceptor with a Ladder Type Backbone for High-Performance Organic Solar Cells

Nailiang Qiu et al.

ADVANCED MATERIALS (2017)

Article Chemistry, Multidisciplinary

A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance

Maojie Zhang et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells

Yuze Lin et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

The Active Layer Morphology of Organic Solar Cells Probed with Grazing Incidence Scattering Techniques

Peter Mueller-Buschbaum

ADVANCED MATERIALS (2014)

Review Chemistry, Multidisciplinary

Bulk Heterojunction Solar Cells: Morphology and Performance Relationships

Ye Huang et al.

CHEMICAL REVIEWS (2014)

Article Materials Science, Multidisciplinary

Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells

Koen Vandewal et al.

PHYSICAL REVIEW B (2010)

Article Polymer Science

Morphology and phase segregation of spin-casted films of Polyfluorene/PCBM blends

Svante Nilsson et al.

MACROMOLECULES (2007)