4.8 Article

Weak Cation-Solvent Interactions in Ether-Based Electrolytes Stabilizing Potassium-ion Batteries

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 61, Issue 33, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202208291

Keywords

Ether-Based Electrolytes; Graphite Anodes; Interfacial Chemistry; Potassium-Ion Batteries; Weak Ion-Solvent Interactions

Funding

  1. National Natural Science Foundation of China [U20A20247, 51922038, 22005093]
  2. Natural Science Foundation of Hunan Province [2022JJ20011]
  3. Fundamental Research Funds for the Central Universities [531119200156]

Ask authors/readers for more resources

Weakening the cation-solvent interactions can effectively solve the problems in lithium-ion batteries, such as co-intercalation phenomena, inferior metal performance, and limited oxidation stability. This method enhances the performance and stability of electrolytes, graphite anodes, and potassium metal.
Conventional ether-based electrolytes exhibited a low polarization voltage in potassium-ion batteries, yet suffered from ion-solvent co-intercalation phenomena in a graphite anode, inferior potassium-metal performance, and limited oxidation stability. Here, we reveal that weakening the cation-solvent interactions could suppress the co-intercalation behaviour, enhance the potassium-metal performance, and improve the oxidation stability. Consequently, the graphite anode exhibits K+ intercalation behaviour (K||graphite cell operates 200 cycles with 86.6 % capacity retention), the potassium metal shows highly stable plating/stripping (K||Cu cell delivers 550 cycles with average Coulombic efficiency of 98.9 %) and dendrite-free (symmetric K||K cell operates over 1400 hours) properties, and the electrolyte exhibits high oxidation stability up to 4.4 V. The ion-solvent interaction tuning strategy provides a promising method to develop high-performance electrolytes and beyond.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available