4.7 Article

Assessing the freshwater fluxes related to beef cattle production: A comparison of integrated crop-livestock systems and a conventional grazing system

Journal

AGRICULTURAL WATER MANAGEMENT
Volume 269, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.agwat.2022.107665

Keywords

Agroforestry; Farming system; Ruminant; Silvopastoral; Tropical pasture; Water footprint

Funding

  1. Research Training Group 'WaterPeople-Agriculture' at the University of Hohenheim - Anton & Petra Ehrmann Foundation -Germany
  2. `Brazilian Agricultural Research Corporation, Embrapa Beef Cattle' -Brazil [33.13.11.004.00.00]

Ask authors/readers for more resources

Beef production is a major water consumer, but there are knowledge gaps regarding the measurement and interpretation of its freshwater consumption. This study quantified the freshwater fluxes related to beef cattle in different production systems in Brazil, and found that water intake and evapotranspiration varied between seasons and systems. Integrated crop-livestock and croplivestock-forestry systems have the potential to reduce freshwater consumption in beef production.
Beef production is one of the largest water consumers of all food production systems, but there are substantial knowledge gaps about the accounting and interpretation of its freshwater consumption. Moreover, hardly any study has assessed the freshwater fluxes related to beef cattle in integrated crop-livestock (ICL) and croplivestock-forestry (ICLF) systems. We aimed at quantifying the freshwater fluxes related to beef cattle raised on continuous permanent Brachiaria pastures (CON) or in ICL and ICLF systems in the Brazilian Cerrado in the rainy and dry seasons. Evapotranspiration of forage grass, Eucalyptus trees in ICLF, and from drinking water troughs were calculated from meteorological data collected in the field. Forage accumulation was measured in 11 paddocks over both seasons, and forage intake, drinking water intake, and bodyweight were quantified in 12 growing Nellore heifers per system during two months per season. Freshwater fluxes related to forage production and animals were estimated. Drinking water intake and water intake via forage did not differ (P = 0.073) between the systems, and were greater (P <= 0.035) in the rainy than the dry season. Faecal and urinary water excretions were greater in the dry than the rainy season (P <= 0.005). The respiratory and cutaneous water losses were greater (P < 0.001) in the rainy than the dry season. In the rainy season, evapotranspiration related to forage accumulation and freshwater consumption for raising beef cattle were greatest in CON, whereas they were greatest in ICLF in the dry season. Although ICLF appeared to be less resilient to dry periods, both integrated systems offer the potential for reduced freshwater consumption for raising beef cattle under grazing conditions, by improving the efficiency of forage use and/or decreasing evapotranspiration of forage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available