4.8 Review

Revival of Ferroelectric Memories Based on Emerging Fluorite-Structured Ferroelectrics

Journal

ADVANCED MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202204904

Keywords

ferroelectric; HfO2; neuromorphic computing; nonvolatile memory; processing-in-memory; ZrO2

Ask authors/readers for more resources

The research on ferroelectric memories has been limited in the past due to scalability and compatibility issues. However, the discovery of ferroelectricity in certain oxides has revived interest in the field. The potential of inducing nanoscale nonvolatility in gate insulators has been demonstrated. However, technical limitations and variations in reliability need to be addressed for practical applications in various types of devices.
Over the last few decades, the research on ferroelectric memories has been limited due to their dimensional scalability and incompatibility with complementary metal-oxide-semiconductor (CMOS) technology. The discovery of ferroelectricity in fluorite-structured oxides revived interest in the research on ferroelectric memories, by inducing nanoscale nonvolatility in state-of-the-art gate insulators by minute doping and thermal treatment. The potential of this approach has been demonstrated by the fabrication of sub-30 nm electronic devices. Nonetheless, to realize practical applications, various technical limitations, such as insufficient reliability including endurance, retention, and imprint, as well as large device-to-device-variation, require urgent solutions. Furthermore, such limitations should be considered based on targeting devices as well as applications. Various types of ferroelectric memories including ferroelectric random-access-memory, ferroelectric field-effect-transistor, and ferroelectric tunnel junction should be considered for classical nonvolatile memories as well as emerging neuromorphic computing and processing-in-memory. Therefore, from the viewpoint of materials science, this review covers the recent research focusing on ferroelectric memories from the history of conventional approaches to future prospects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available