4.8 Article

Surface Co-Modification of Halide Anions and Potassium Cations Promotes High-Rate CO2-to-Ethanol Electrosynthesis

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Lithium Vacancy-Tuned [CuO4] Sites for Selective CO2 Electroreduction to C2+ Products

Chen Peng et al.

Summary: Utilizing an electrochemical delithiation strategy, a lithium vacancy-tuned Li2CuO2 catalyst was developed to enhance the efficiency and selectivity of electrochemical CO2 reduction to valuable multi-carbon (C2+) products. The introduction of lithium vacancies led to improved CO-CO coupling, resulting in a high Faradaic efficiency of 90.6 +/- 7.6% for C2+ and an outstanding partial current density of -706 +/- 32 mA cm(-2) under certain conditions. This work demonstrates a promising approach to produce controllable alkali metal vacancy-tuned Cu catalytic sites for C2+ products in electrochemical CO2 reduction.

SMALL (2022)

Review Energy & Fuels

Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers

David Wakerley et al.

Summary: Chemicals and fuels can be generated from CO2 via electrolysers that employ gas diffusion electrodes. This review discusses the key advances and remaining shortfalls of GDE-based CO2 electrolysers, as well as provides an overview of partial current densities, efficiencies, and stabilities achieved.

NATURE ENERGY (2022)

Article Chemistry, Physical

Structure-Performance Descriptors and the Role of the Axial Oxygen Atom on M-N4-C Single-Atom Catalysts for Electrochemical CO2 Reduction

Jing Wang et al.

Summary: In this study, the mechanism of CO2 reduction to methane on catalysts was investigated using density functional theory calculations. The introduction of an axial O atom was found to affect the catalytic activity by changing the coordination structure of the metal atoms. A descriptor based on the intrinsic properties of materials was developed to correlate the catalytic activity, allowing for direct prediction of catalyst activity. This work is important for understanding the mechanism of electrocatalytic CO2 reduction and designing efficient and stable electrocatalysts.

ACS CATALYSIS (2022)

Article Chemistry, Physical

Highly-Exposed Single-Interlayered Cu Edges Enable High-Rate CO2-to-CH4 Electrosynthesis

Chen Peng et al.

Summary: In this study, ultrathin CuGaO2 nanosheets with highly exposed single-interlayered Cu edges were synthesized, and they exhibited excellent CO2 electroreduction catalytic activity towards CH4. The results suggest a design strategy for promoting CH4 electrosynthesis by tuning both the crystal facets and Cu-Cu distance.

ADVANCED ENERGY MATERIALS (2022)

Article Chemistry, Multidisciplinary

Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampere-Level Electrosynthesis of Formate from CO2

Shuai Yan et al.

Summary: A surface-lithium-doped tin (s-SnLi) catalyst was developed to enhance the activity and selectivity of CO2 electroreduction to formate. The catalyst exhibited excellent performance with high Faradaic efficiency and stability in Zn-CO2 batteries, showing potential for commercialization.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface

Zhengxiang Gu et al.

Summary: A rational strategy was demonstrated to achieve a high faradaic efficiency towards C2+ alcohols by constructing copper catalysts with stepped sites in a CO-rich environment. The defect-site-rich copper catalyst enabled the formation of C2+ alcohols with partial current densities of > 100 mA.cm(-2) and achieved a stable alcohol faradaic efficiency of around 60% during a continuous 30-hour operation.

JOULE (2021)

Article Chemistry, Multidisciplinary

Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO2 Reduction to C2+

Minhan Li et al.

Summary: In this study, a chlorine-doped porous copper electrocatalyst with high C2+ Faradaic efficiency was developed, showing outstanding catalytic stability over a long-term period. The stable cationic Cu-0/Cu+ species induced by chlorine and the well-preserved structure with abundant active sites were found critical to achieving high FE of C2+ in electrochemical CO2 reduction over time.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO2 to CH4

Lei Zhang et al.

Summary: Cu(I)-based catalysts are essential for the electrocatalytic CO2 reduction, and in this study, two stable copper(I)-based catalysts with inherent cuprophilic interactions were synthesized for highly selective CO2-to-CH4 conversion. The substitution of sulfate radicals with hydroxyl radicals led to a dynamic crystal structure transition, enhancing the cuprophilic interactions inside the catalyst structure. The enhanced cuprophilic interactions in NNU-33(H) showed outstanding CH4 selectivity, representing the best crystalline catalyst for electrocatalytic CO2-to-CH4 conversion.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Multidisciplinary Sciences

Efficient CO2 electroreduction on facet-selective copper films with high conversion rate

Gong Zhang et al.

Summary: The authors developed a novel synthetic approach to prepare Cu(100)-rich thin film electrodes for CO2 electroreduction, achieving high Faradaic efficiency for ethylene and C2+ products. Scaling up the electrode led to increased total current and higher yield of desired C2+ products. Insights into Cu facets exposure effects on intermediates were provided through in situ spectroscopic methods and theoretical calculations, enabling precise design of CO2 reduction reactions for future industrial applications.

NATURE COMMUNICATIONS (2021)

Review Chemistry, Physical

Electrochemical CO2 Reduction to Ethanol with Copper-Based Catalysts

Dilan Karapinar et al.

Summary: This Review highlights the importance and challenges of electrochemical CO2 reduction for ethanol production, categorizing and evaluating the performance of copper-based catalysts to aid in the design of more efficient catalysts for selective ethanol formation.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

High-Rate CO2 Electroreduction to C2+ Products over a Copper-Copper Iodide Catalyst

Hefei Li et al.

Summary: The study successfully designed a Cu-CuI composite catalyst that achieves high-efficiency production of C2+ products.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Lithiation-Enabled High-Density Nitrogen Vacancies Electrocatalyze CO2 to C2 Products

Chen Peng et al.

Summary: This study demonstrates that high-density nitrogen vacancies formed on cubic copper nitrite can efficiently catalyze the CO-CO coupling to form key OCCO* intermediate for the production of valuable C-2 products in electrochemical CO2 reduction. The Cu3Nx catalyst with abundant nitrogen vacancies shows one of the highest Faradaic efficiencies towards C-2 products and outstanding electrochemical stability at high current densities, providing an attractive approach for the creation of catalytic centers towards multicarbon products in electrochemical CO2 reduction.

ADVANCED MATERIALS (2021)

Article Nanoscience & Nanotechnology

Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying

Tingting Zheng et al.

Summary: The single-atom Pb-alloyed Cu catalyst (Pb1Cu) efficiently converts CO2 into formic acid with high selectivity and activity, offering the potential to increase productivity.

NATURE NANOTECHNOLOGY (2021)

Article Chemistry, Physical

Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution

Mariana C. O. Monteiro et al.

Summary: The study found that metal cations play a crucial role in stabilizing the CO2 intermediate during the reduction process on gold electrodes. Density functional theory simulations confirmed that partially desolvated metal cations enable the reduction by stabilizing the CO2- intermediate through short-range electrostatic interactions. In conclusion, the positively charged species from the electrolyte are key to stabilizing the crucial reaction intermediate.

NATURE CATALYSIS (2021)

Article Chemistry, Multidisciplinary

Low-Valence Znδ+ (0<δ<2) Single-Atom Material as Highly Efficient Electrocatalyst for CO2 Reduction

Simin Li et al.

Summary: The nitrogen-stabilized single-atom catalyst Zn delta+-NC containing low-valence zinc atoms shows excellent catalytic performance in the electrochemical reduction of CO2 to CO. The unsaturated three-coordinate sites on Zn play a key role in reducing the energy barrier and achieving high CO selectivity. This work sheds light on the relationship between coordination number, valence state, and catalytic performance, with potential industrial applications for high current densities.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Multidisciplinary Sciences

Molecular tuning of CO2-to-ethylene conversion

Fengwang Li et al.

NATURE (2020)

Article Multidisciplinary Sciences

CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2

F. Pelayo Garcia de Arquer et al.

SCIENCE (2020)

Article Chemistry, Multidisciplinary

Grain-Boundary-Rich Copper for Efficient Solar-Driven Electrochemical CO2 Reduction to Ethylene and Ethanol

Zhiqiang Chen et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Multidisciplinary Sciences

Accelerated discovery of CO2 electrocatalysts using active machine learning

Miao Zhong et al.

NATURE (2020)

Article Chemistry, Multidisciplinary

Highly Efficient Electroreduction of CO2to C2+Alcohols on Heterogeneous Dual Active Sites

Chunjun Chen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Physical

Electron-Deficient Cu Sites on Cu3Ag1Catalyst Promoting CO2Electroreduction to Alcohols

Ximeng Lv et al.

ADVANCED ENERGY MATERIALS (2020)

Article Chemistry, Multidisciplinary

Binding Site Diversity Promotes CO2 Electroreduction to Ethanol

Yuguang C. Li et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Review Chemistry, Multidisciplinary

Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte

Stephanie Nitopi et al.

CHEMICAL REVIEWS (2019)

Article Chemistry, Multidisciplinary

Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels

Dan Ren et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Multidisciplinary Sciences

Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen

Mingchuan Luo et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Multidisciplinary

Understanding cation effects in electrochemical CO2 reduction

Stefan Ringe et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Multidisciplinary

Nanoporous Copper Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol

Thao T. H. Hoang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Article Chemistry, Multidisciplinary

Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide

Joaquin Resasco et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Chemistry, Physical

Advanced analysis of copper X-ray photoelectron spectra

Mark C. Biesinger

SURFACE AND INTERFACE ANALYSIS (2017)

Article Chemistry, Multidisciplinary

Metal-Free Nitrogen-Doped Mesoporous Carbon for Electroreduction of CO2 to Ethanol

Yanfang Song et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Article Chemistry, Multidisciplinary

Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper

Erlend Bertheussen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Chemistry, Multidisciplinary

Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu

Meenesh R. Singh et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Multidisciplinary Sciences

A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

Jingjie Wu et al.

NATURE COMMUNICATIONS (2016)

Article Chemistry, Physical

Electric Field Effects in Electrochemical CO2 Reduction

Leanne D. Chen et al.

ACS CATALYSIS (2016)

Article Chemistry, Multidisciplinary

The promotion effect of isolated potassium atoms with hybridized orbitals in catalytic oxidation

Fei Xu et al.

CHEMICAL COMMUNICATIONS (2015)