4.8 Article

Concentrated Electrolytes Enabling Stable Aqueous Ammonium-Ion Batteries

Journal

ADVANCED MATERIALS
Volume 34, Issue 32, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202201877

Keywords

ammonium-ion batteries; concentrated electrolytes; high coulombic efficiency; solvation structure

Funding

  1. Chinese Scholarship Council
  2. Helmholtz Association
  3. Diamond Light Source [SP14239]

Ask authors/readers for more resources

A low-cost solid-state ammonium-ion battery based on concentrated aqueous (NH4)2SO4 electrolyte is reported, showing remarkable cycling performance and stability through systematic investigation of its electrochemical properties and electrode-electrolyte interface.
Rechargeable aqueous batteries are promising devices for large-scale energy-storage applications because of their low-cost, inherent safety, and environmental friendliness. Among them, aqueous ammonium-ion (NH4+) batteries (AAIB) are currently emerging owing to the fast diffusion kinetics of NH4+. Nevertheless, it is still a challenge to obtain stable AAIB with relatively high output potential, considering the instability of many electrode materials in an aqueous environment. Herein, a cell based on a concentrated (5.8 m) aqueous (NH4)(2)SO4 electrolyte, ammonium copper hexacyanoferrate (N-CuHCF) as the positive electrode (cathode), and 3,4,9,10-perylene-bis(dicarboximide) (PTCDI) as the negative electrode (anode) is reported. The solvation structure, electrochemical properties, as well as the electrode-electrolyte interface and interphase are systematically investigated by the combination of theoretical and experimental methods. The results indicate a remarkable cycling performance of the low-cost rocking-chair AAIB, which offers a capacity retention of approximate to 72% after 1000 cycles and an average output potential of approximate to 1.0 V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available