4.8 Article

High-Efficiency Blue Perovskite Light-Emitting Diodes with Improved Photoluminescence Quantum Yield via Reducing Trap-Induced Recombination and Exciton-Exciton Annihilation

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 32, Issue 40, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202203962

Keywords

CsAc; exciton-exciton annihilation; perovskite light-emitting diodes; photoluminescence quantum yield; trap-induced recombination

Funding

  1. Research Grants Council of the Hong Kong Special Administrative Region, China
  2. CityU [PDFS2021-1S06]

Ask authors/readers for more resources

In this study, the PLQY and EQE of blue perovskite LEDs were improved by introducing CsAc and applying solvent annealing. Through these methods, non-radiative losses caused by trap-induced recombination and exciton-exciton annihilation were effectively suppressed.
Although the performance of blue perovskite LEDs (PeLEDs) has improved rapidly in the past few years, it still lags behind their green and red counterparts. One major cause of the inferior performance is the relatively low photoluminescence quantum yield (PLQY) of blue perovskite emitters due to more severe nonradiative recombination loss induced by traps and exciton-exciton annihilation (EEA). In this study, theoretical analysis reveals that trap-induced recombination limits the maximum obtainable PLQY and EEA leads to fast roll-off at high excitons densities. To address these issues, a synergic approach by introducing CsAc into perovskite and applying solvent annealing (SA) is used to suppress the trap-induced recombination and the EEA, respectively. The acetate anion in CsAc effectively passivates defects of perovskite through Lewis acid-base reaction, enhancing PLQY of the perovskite films from 10.7% to 49.2%. Furthermore, carrier recombination dynamic investigations reveal that EEA and PLQY roll-off are successfully deferred with SA treatment. As a result, external quantum efficiency (EQE) is improved from 2.9% to 11% and EQE roll-off is significantly suppressed at high current density. This work demonstrates that alleviating trap-induced and EEA non-radiative losses are two effective methods to improve the PLQY and EQE of blue PeLEDs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available