4.8 Article

Continuous Nanoparticle Patterning Strategy in Layer-Structured Nanocomposite Fibers

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 32, Issue 35, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202204731

Keywords

anisotropic; energy efficiency; multilayers; passive thermoregulators; polymer nanoparticle composites

Funding

  1. Global Sports Institute (GSI) at Arizona State University
  2. U.S. National Science Foundation (NSF) [EAGER 1902172]

Ask authors/readers for more resources

This research focuses on a new patterning technique to create ordered nanoparticle assembly in layered composite fibers. By using innovative tool design, unique material combinations, and precise rheology control, distinct layers can be retained during fiber spinning. This approach presents an unprecedented fiber manufacturing platform for controlled layer dimensions and nanoparticle manipulations, with potential applications in various fields including structural supports, heat exchangers, electrical conductors, sensors, actuators, and soft robotics.
Anisotropic polymer/nanoparticle composites display unique mechanical, thermal, electrical, and optical properties depending on confirmation and configuration control of the composing elements. Processes, such as vapor deposition, ice-templating, nanoparticle self-assembly, additive manufacturing, or layer-by-layer casting, are explored to design and control nanoparticle microstructures with desired anisotropy or isotropy. However, limited attempts are made toward nanoparticle patterning during continuous fiber spinning due to the thin-diameter cross section and 1D features. Thus, this research focuses on a new patterning technique to form ordered nanoparticle assembly in layered composite fibers. As a result, distinct layers can be retained with innovative tool design, unique material combinations, and precise rheology control during fiber spinning. The layer multiplying-enabled nanoparticle patterning is demonstrated in a few material systems, including polyvinyl alcohol (PVA)-boron nitride (BN)/PVA, polyacrylonitrile (PAN)-aluminum (Al)/PAN, and PVA-BN/graphene nanoplatelet (GNP)/PVA systems. This approach demonstrates an unprecedentedly reported fiber manufacturing platform for well-managed layer dimensions and nanoparticle manipulations with directional thermal and electrical properties that can be utilized in broad applications, including structural supports, heat exchangers, electrical conductors, sensors, actuators, and soft robotics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available