4.8 Article

Quantitative Evaluation of Loss Capability for In Situ Conductive Phase Enhanced Microwave Absorption of High-Entropy Transition Metal Oxides

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 32, Issue 35, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202205325

Keywords

microwave absorbers; theoretical design; loss capability; high-entropy oxides; in-situ heterogeneous phases

Funding

  1. Science and Technology Commission of Shanghai Municipality, Shanghai Sailing Program [21YF1454600]

Ask authors/readers for more resources

By introducing conductive materials in (Fe0.2xCo0.2Ni0.2Cr0.2Mn0.2)(3)O-4, a dual-phase composite is formed, which enhances the ohmic loss and dielectric loss, while maintaining good impedance matching condition. As a result, substantial absorption across the whole X or Ku band is achieved.
High-entropy oxides (HEO) with high stability and designability are potential microwave absorbers that serve in harsh environments. However, loss design is critical for the absorption performance of HEO due to its weak intrinsic loss capability. Inadequate loss ability results in considerable secondary reflection. Here, an in situ conductive heterogeneous phase is constructed in (Fe0.2xCo0.2Ni0.2Cr0.2Mn0.2)(3)O-4 (x = 1-5) using a reductive circumstance, to form a dual-phase composite. Both the ohmic and dielectric loss are enhanced as the conductive phase is introduced, while great impedance matching condition is well maintained. Hence, the composites can achieve substantial absorption across the whole X or Ku band with a thin thickness. Furthermore, key efforts are made to reveal the relationship between the absorbing performance and loss capability of an absorber. The analytical expression of the theoretical threshold of attenuation constant is derived. Based on the statistics of experimental data, the broad feasibility and practicability of the proposed theoretical threshold of attenuation constant are confirmed and discussed. Combined with both the theoretical and experimental studies, the mechanism by which the conductive phase contributes to increased absorption is also disclosed, providing an effective basis for the loss design of broadband microwave absorbers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available