4.8 Article

Bioprinting of hair follicle germs for hair regenerative medicine *

Journal

ACTA BIOMATERIALIA
Volume 165, Issue -, Pages 50-59

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2022.06.021

Keywords

Bioprinting; Hair regeneration; Hair follicle germ; Microgel beads; Collagen contraction

Ask authors/readers for more resources

This study proposes a scalable and automated approach for the preparation of highly hair-inductive grafts using a bioprinter. The method utilizes collagen droplets to facilitate hair follicle regeneration through cell interactions. This approach holds great potential for clinical applications.
Hair regenerative medicine is a promising approach to treat hair loss. The replication of in vivo tissue con-figurations and microenvironments, such as hair follicle germs, has been studied to prepare tissue grafts for hair regenerative medicine. However, such approaches should be scalable, because a single patient with alopecia requires thousands of tissue grafts. In this paper, we propose an approach for the scalable and automated preparation of highly hair-inductive tissue grafts using a bioprinter. Two collagen droplets (2 & mu;L each) containing mesenchymal and epithelial cells were placed adjacent to each other to fabricate hair-follicle-germ-like grafts. During three days of culture, the pairs of microgel beads were spontaneously contracted by cell traction forces, whereas the two cell types remained separated, where the densities of the cells and collagen were enriched more than 10 times. This approach allowed us to fabricate submil-limeter objects printed with millimeter-order accuracy, facilitating scalable and automated tissue graft preparation. Because of mesenchymal-epithelial interactions, hair microgels (HMGs, i.e., collagen-and cell-enriched microgels) efficiently regenerate hair follicles and shafts when transplanted into the back skin of mice. However, the generated hair shafts mostly remain under the skin. Therefore, we printed microgel beads onto surgical suture guides arrayed on a stage. The microgel beads were contracted along with the suture guides in culture prior to transplantation. The guide-inserted HMGs significantly im-proved hair-shaft sprouting through the skin, owing to the control of the orientation of the HMGs trans-planted into the skin. This approach is a promising strategy to advance hair regenerative medicine.Statement of significance This study proposes an approach for the scalable and automated preparation of highly hair-inductive grafts using a bioprinter. Two collagen droplets containing mesenchymal and epithelial cells were placed adjacently. Cell traction forces caused the pairs of microgel beads to spontaneously contract in culture. Because of mesenchymal-epithelial interactions, hair microgels (HMGs) efficiently regenerated hair fol-licles on the back skin of mice. However, the generated hair shafts remained mostly beneath the skin. Therefore, we printed microgel beads onto surgical suture guides arrayed on a stage. The guide-inserted HMGs significantly improved hair-shaft sprouting through the skin owing to the control of the orientation of the HMGs in the skin. This approach represents a promising strategy for advancing hair regenerative medicine.& COPY; 2022 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available