4.8 Article

Li8MnO6: A Novel Cathode Material with Only Anionic Redox

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c06173

Keywords

anionic oxygen redox; battery; cathode; energy storage; lithium-ion battery; Li8MnO6

Funding

  1. National Natural Science Foundation of China [21703036]
  2. Natural Science Foundation of Fujian Province [2021 J01547]
  3. US Department of Energy, Office of Basic Energy Sciences [DE-FG02-17ER16362]

Ask authors/readers for more resources

This study investigates the effect of Mn substitution on the oxygen redox mechanism in Li-excess transition metal-oxide cathode materials and finds that Mn substitution effectively inhibits the formation of peroxo and superoxo species. The results provide important insights for the design of high-capacity lithium-ion battery cathode materials.
In Li-excess transition metal-oxide cathode materials, anionic oxygen redox can offer high capacity and high voltages, although peroxo and superoxo species may cause oxygen loss, poor cycling performance, and capacity fading. Previous work showed that undesirable formation of peroxide and superoxide bonds was controlled to some extent by Mn substitution, and the present work uses density functional calculations to examine the reasons for this by studying the anionic redox mechanism in Li8MnO6. This material is obtained by substituting Mn for Sn in Li8SnO6 or for Zr in Li8ZrO6 , and we also compare this to previous work on those materials. The calculations predict that Li8(M)nO(6) is stable at room temperature (with a band gap of 3.19 eV as calculated by HSE06 and 1.82 eV as calculated with the less reliable PBE+U), and they elucidate the chemical and structural effects involved in the inhibition of oxygen release in this cathode. Throughout the whole delithiation process, only O2- ions are oxidized. The directional Mn-O bonds formed from unfilled 3d orbitals effectively inhibit the formation of O-O bonds, and the layered structure is maintained even after removing 3 Li per Li8MnO6 formula unit. The calculated average voltage for removal of 3 Li is 3.69 V by HSE06, and the corresponding capacity is 389 mAh/g. The high voltage of oxygen anionic redox and the high capacity result in a high energy density of 1436 Wh/kg. The Li-ion diffusion barrier for the dominant interlayer diffusion path along the c axis is 0.57 eV by PBE+U. These results help us to understand the oxygen redox mechanism in a new lithium-rich Li8MnO6 cathode material and contribute to the design of high-energy density lithium-ion battery cathode materials with favorable electrochemical properties based on anionic oxygen redox.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available