4.8 Article

Designing Hybrid Mesoporous Pr/Tannate-Inbuilt ZIF8-Decorated MoS2 as Novel Nanoreservoirs toward Smart pH-Triggered Anti-corrosion/Robust Thermomechanical Epoxy Nanocoatings

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 14, Issue 27, Pages 31170-31193

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c08781

Keywords

ZIF8@MoS2; hybrid nanoreservoir; epoxy; pH-triggered corrosion protection; interfacial interaction; thermomechanical

Ask authors/readers for more resources

In this study, a novel smart pH-triggered nanocoating was successfully prepared by incorporating organic tannic acid and inorganic praseodymium cations as corrosion inhibitors into a zeolitic imidazolate framework-type porous coordination polymer.
For the first time, organic tannic acid (TA) molecules and then inorganic praseodymium (Pr) cations as corrosion inhibitors were successfully loaded into a zeolitic imidazolate framework (ZIF8)-type porous coordination polymer (PCP) decorated on molybdenum disulfide, MoS2 (MS)-based transition metal dichalcogenides (TMDs) to create novel hybrid mesoporous Pr/TA-ZIF8@MS nanoreservoirs. Thereafter, the hybrid nanoreservoirs were embedded into the epoxy matrix for the preparation of smart pH-triggered nanocoatings. Characterizations of the Pr/TA-ZIF8@MS nanoreservoirs via Fourier transform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG), Brunauer-Emmett-Teller (BET), and field emission-scanning electron microscopy (FE-SEM)/energy-dispersive X-ray spectroscopy (EDS) experiments confirmed the fabrication of mesoporous structures comprising Pr/TA interfacial interactions with ZIF8-decorated MS nanoplatelets possessing high thermal stability and compact/dense configuration features with a framework reorientation. A remarkable smart release of the inhibited cations (Pr3+ and Zn-2(+)) in the presence of inbuilt TA at both acidic and alkaline media was achieved under inductively coupled plasma (ICP) examination. The superior pH-triggered self-healing inhibition through the smart controlled-release of Pr, tannate, Zn, and imidazole inhibited species/complexes from EP/Pr-TA-ZIF8@MS via ligand exchange was obtained from electrochemical impedance spectroscopy (EIS) assessments of the scratched coatings during 72 h of saline immersion. In addition, the long-term barrier-induced corrosion prevention (log vertical bar Z vertical bar(10) (mHz) = 10.49 Omega.cm(2) after 63 days) of the EP/Pr-TA-ZIF8@MS was actualized. Moreover, efficient increments of the coating cross-link density (56.45%), tensile strength (63.6%), and toughness value (56.5%) compared to the Neat epoxy coating revealed noticeable thermomechanical properties of the EP/Pr-TA-ZIF8@MS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available