4.8 Review

Electrolyte Effects on CO2 Electrochemical Reduction to CO

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 55, Issue 14, Pages 1900-1911

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.2c00080

Keywords

-

Funding

  1. Advanced Research Center for Chemical Building Blocks (ARC CBBC) Consortium
  2. Netherlands Organization for Scientific Research
  3. Shell Global Solutions B.V.
  4. European Commission (Innovative Training Network Elcorel) [722614]
  5. Solar-to-Products Program
  6. Marie Curie Actions (MSCA) [722614] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

The electrochemical reduction of CO2 faces challenges such as low energy and Faradaic efficiencies due to concurrent electrochemical reactions and solution acid-base reactions. Recent studies have shown that the nature of the electrolyte, specifically pH and cation identity, plays a crucial role in tuning the efficiency of CO2RR to CO in aqueous solutions.
CONSPECTUS: The electrochemical reduction of CO2 (CO2RR) constitutes an alternative to fossil fuel-based technologies for the production of fuels and commodity chemicals. Yet the application of CO2RR electrolyzers is hampered by low energy and Faradaic efficiencies. Concomitant electrochemical reactions, like hydrogen evolution (HER), lower the selectivity, while the conversion of CO2 into (bi)carbonate through solution acid-base reactions induces an additional concentration overpotential. During CO2RR in aqueous media, the local pH becomes more alkaline than the bulk causing an additional consumption of CO2 by the homogeneous reactions. The latter effect, in combination with the low solubility of CO2 in aqueous electrolytes (33 mM), leads to a significant depletion in CO2 concentration at the electrode surface. The nature of the electrolyte, in terms of pH and cation identity, has recently emerged as an important factor to tune both the energy and Faradaic efficiency. In this Account, we summarize the recent advances in understanding electrolyte effects on CO2RR to CO in aqueous solutions, which is the first, and crucial, step to further reduced products. To compare literature findings in a meaningful way, we focus on results reported under well-defined mass transport conditions and using online analytical techniques. The discussion covers the molecular-level understanding of the effects of the proton donor, in terms of the suppression of the CO2 gradient vs enhancement of HER at a given mass transport rate and of the cation, which is crucial in enabling both CO2RR and HER. These mechanistic insights are then translated into possible implications for industrially relevant cell geometries and current densities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available