3.9 Article

Development and evaluation of frameworks for real-time bus passenger occupancy prediction

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.ijtst.2022.03.005

Keywords

Bus transit systems; Passenger occupancy; Bus transit reliability; Regression model; Random forest model

Ask authors/readers for more resources

Seating availability and boarding space on buses have a significant impact on riders' attitudes. However, little research has been done on short-term passenger occupancy predictions on individual buses. This study investigates the use of linear regression models and machine learning models to predict passenger occupancies on buses in real-time, based on data from bus operations and weather information. The results show that both models provide accurate estimates.
One critical aspect of bus service quality that influences riders' attitudes is the availability of seating and/or space to board vehicles. Unfortunately, little attention has been given to short-term passenger occupancy predictions on individual buses. This research examines the use of conventional linear regression models and a machine-learning (random forest) model to predict passenger occupancies on individual buses when they arrive at future stops using data available in real-time from bus operations (e.g., Automatic Passenger Counter (APC) systems) and weather information. Overall, the linear model (LM) and the random forest (RF) model are found to provide close estimates. Three sets of models are developed in this work to model the current and future stop pairs: a next-stop-based model that only models the occupancy at the right next stop and two models that predict the occupancy at any future stop along the bus route (called OD-pair based models). The OD-pair based models are found to predict passenger occupancies more accurately at downstream stops, regardless of whether the LM or RF is used. Examination of the transferability reveals that models can provide reliable estimates of future data when trained with historical information if demand patterns are fairly stable. These models and insights can be used by transit agencies in improving the quality and breadth of information provided to transit system users and even be integrated directly into real-time end-user feeds. & COPY; 2022 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available