4.7 Article

Experimental study on energy consumption of computer numerical control machine tools

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 112, Issue -, Pages 3864-3874

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2015.07.040

Keywords

Energy consumption; Non-cutting motions; Material removal; Computer numerical control machine tools

Funding

  1. National Natural Science Foundation of China [51175464]
  2. Ningbo Science and Technology Innovation Team [B81006]

Ask authors/readers for more resources

Machining processes are responsible for substantial environmental impacts due to their great energy consumption. Accurately characterizing the energy consumption of machining processes is a starting point to increase manufacturing energy efficiency and reduce their associated environmental impacts. The energy calculation of machining processes depends on the availability of energy supply data of machine tools. However, the energy supply can vary greatly among different types of machine tools so that it is difficult to obtain the energy data theoretically. The aim of this research was to investigate the energy characteristics and obtain the power models of computer numerical control (CNC) machine tools through an experimental study. Four CNC lathes, two CNC milling machines and one machining center were selected for experiments. Power consumption of non-cutting motions and material removal was measured and compared for the selected machine tools. Here, non-cutting motions include standby, cutting fluid spraying, spindle rotation and feeding operations of machine tools. Material removal includes turning and milling. Results show that the power consumption of non-cutting motions and milling is dependent on machine tools while the power consumption of turning is almost independent from the machine tools. The results imply that the energy saving potential of machining processes is tremendous. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available