4.7 Article

Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 13, Issue 1, Pages 100-109

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.6b00900

Keywords

-

Funding

  1. U.S. Department of Energy [DE-SC0010499]
  2. Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0012575]
  3. U.S. Department of Energy (DOE) [DE-SC0010499] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Without extensive fitting, accurate prediction of transition metal chemistry is a challenge for semilocal and hybrid density funcitonals. The Random Phase Approximation (RPA) has been shown to yield superior results to semilocal functionals for main group thermochemistry, but much less is known about its performance for transition metals. We have therefore analyzed the behavior of reaction energies, barrier heights, and ligand dissociation energies obtained with RPA and compare our results to several semilocal and hybrid functionals. Particular attention is paid to the reference determinant dependence of RPA. We find that typically the results do not vary much between semilocal or hybrid functionals as a reference, as long as the fraction of exact exchange (EXX) mixing in the hybrid functional is small. For large fractions of EXX mixing, however, the Hartree-Fock-like nature of the determinant can severely degrade the performance. Overall, RPA systematically reduces the errors of semilocal functionals and delivers excellent performance from a single reference determinant for inherently multireference reactions. The behavior of dual hybrids that combine RPA correlation with a hybrid exchange energy was also explored, but ultimately did not lead to a systematic improvement compared to traditional RPA for these systems. We rationalize this conclusion by decomposing the contributions to the reaction energies, and briefly discuss the possible implications for double-hybrid functionals based on RPA. The correlation between EXX mixing and spin-symmetry breaking is also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available