4.7 Article

Boundary homogenization for a sphere with an absorbing cap of arbitrary size

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 145, Issue 21, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4968598

Keywords

-

Funding

  1. National Institutes of Health, the Center for Information Technology
  2. [I.33P]

Ask authors/readers for more resources

This paper focuses on trapping of diffusing particles by a sphere with an absorbing cap of arbitrary size on the otherwise reflecting surface. We approach the problem using boundary homogenization which is an approximate replacement of non-uniform boundary conditions on the surface of the sphere by an effective uniform boundary condition with appropriately chosen effective trapping rate. One of the main results of our analysis is an expression for the effective trapping rate as a function of the surface fraction occupied by the absorbing cap. As the cap surface fraction increases from zero to unity, the effective trapping rate increases from that for a small absorbing disk on the otherwise reflecting sphere to infinity which corresponds to a perfectly absorbing sphere. The obtained expression for the effective trapping rate is applied to find the rate constant describing trapping of diffusing particles by an absorbing cap on the surface of the sphere. Finally, we find the capacitance of a metal cap of arbitrary size on a dielectric sphere using the relation between the capacitance and the rate constant of the corresponding diffusion-limited reaction. The relative error of our approximate expressions for the rate constant and the capacitance is less than 5% over the entire range of the cap surface fraction from zero to unity. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available