4.5 Article

Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology

Journal

HELIYON
Volume 8, Issue 5, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.heliyon.2022.e09383

Keywords

Electrocoagulation; Hospital wastewater; Color; COD and turbidity removal; Energy consumption; Optimization; RSM

Ask authors/readers for more resources

Electrocoagulation (EC) is a process that uses sacrificial electrodes to supply electric current for the removal of pollutants from wastewater. This study experimentally investigated the impact of various factors on the efficiency of pollutant removal and energy consumption in the EC process, and optimized the operational parameters using mathematical and statistical methods.
Electrocoagulation (EC) is a process used by supply of electric current with sacrificial electrodes for the removal of pollutant from wastewater. The study was experimentally investigated taking into account various factors such as pH (3-7.5), current (0.03-0.09 A), distance between the electrodes (1-2 cm), electrolytic concentration (1-3 g/L), and electrolysis time (20-60 min) which is impact on the % removal efficiency of color, chemical oxygen demand (COD), turbidity and determination of energy consumption used for aluminum (Al) electrode used. The surface response design process based on the central composite design (CCD) has been used to optimize different operational parameters for treatment of hospital wastewater using EC process. The % color, COD and turbidity removal, and energy consumption under different conditions were predicted with the aid of a quadratic model, as were the significance and their interaction with independent variables assessed by analysis of variance (ANOVA). The optimal conditions were obtained through mathematical and statistical methods to reach maximum % color, COD, and turbidity removal with minimum energy consumption. The results showed that the maximum removal of color (92.30%), COD (95.28%), and turbidity (83.33%) were achieved at pH-7.5, current-0.09A, electrolytic concentration-3g/L, distance between electrodes-2 cm and reaction time 60 min. This means that, the process of EC can remove pollutants from various types of wastewaters and industrial effluent under the various operating parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available