4.8 Article

Fusing spheroids to aligned μ-tissues in a heart-on-chip featuring oxygen sensing and electrical pacing capabilities

Journal

MATERIALS TODAY BIO
Volume 15, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mtbio.2022.100280

Keywords

Organ-on-Chip; Microphysiological systems; Optical sensors; Noninvasive readouts; Metabolism; Electrical stimulation

Funding

  1. DAAD - Bundesministeriums f?r Bildung und Forschung (BMBF) [57387214]
  2. European Union [812954]
  3. Marie Curie Actions (MSCA) [812954] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

Over the past decade, Organ-on-Chip (OoC) has emerged as a promising technology for advanced in vitro models that mimic key physiological cues. A novel concept using spheroids derived from induced pluripotent stem cells is presented for cell injection and tissue generation, allowing for large-scale production of uniform-sized spheroids. These spheroids are then transported and accumulated in dogbone-shaped tissue chambers, where they fuse and form aligned, contracting cardiac muscle fibers. The study also demonstrates electrical stimulation capabilities using fluidic media connectors as electrodes and incorporates optical O2 sensor spots into resin-based microfluidic systems for in situ determination of O2 partial pressures. Overall, this system provides a blueprint for integrating biophysical stimulation and probing capabilities in advanced Organ-on-Chip technology, facilitating the facile and robust generation of high-density microtissues that can be scaled-up and automated.
Over the last decade, Organ-on-Chip (OoC) emerged as a promising technology for advanced in vitro models, recapitulating key physiological cues. OoC approaches tailored for cardiac tissue engineering resulted in a variety of platforms, some of which integrate stimulation or probing capabilities. Due to manual handling processes, however, a large-scale standardized and robust tissue generation, applicable in an industrial setting, is still out of reach. Here, we present a novel cell injection and tissue generation concept relying on spheroids, which can be produced in large quantities and uniform size from induced pluripotent stem cell-derived human cardiomyocytes. Hydrostatic flow transports and accumulates spheroids in dogbone-shaped tissue chambers, which subsequently fuse and form aligned, contracting cardiac muscle fibers. Furthermore, we demonstrate electrical stimulation capabilities by utilizing fluidic media connectors as electrodes and provide the blueprint of a low-cost, opensource, scriptable pulse generator. We report on a novel integration strategy of optical O2 sensor spots into resinbased microfluidic systems, enabling in situ determination of O2 partial pressures. Finally, a proof-of-concept demonstrating electrical stimulation combined with in situ monitoring of metabolic activity in cardiac tissues is provided. The developed system thus opens the door for advanced OoCs integrating biophysical stimulation as well as probing capabilities and serves as a blueprint for the facile and robust generation of high density microtissues in microfluidic modules amenable to scaling-up and automation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available