4.8 Article

Strontium-doped hardystonite plasma sprayed coatings with robust antimicrobial activity

Journal

MATERIALS TODAY CHEMISTRY
Volume 24, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mtchem.2022.100822

Keywords

Antibacterial; Plasma sprayed coatings; Nanoindentations; Mechanical properties; Hardystonite

Funding

  1. Allegra Orthopaedics Ltd. (NSW, Australia) [IC170100022]
  2. ARC Industrial Transformation Training Centre (ITTC) [IC180100005]

Ask authors/readers for more resources

The strontium-doped hardystonite coating demonstrates superior antibacterial properties and mechanical properties compared to the commercial hydroxyapatite coating, making it a promising candidate for bioceramic coating applications in orthopedic implants.
A strontium-doped hardystonite (Sr-HT) bioceramic, in bulk form, demonstrates excellent bioactivity for bone regeneration with high fracture toughness and compressive strength. This work examines the antibacterial and mechanical properties of Sr-HT coatings on an alpha-beta titanium alloy with a high specific strength and excellent corrosion resistance (Ti-6Al-4V) produced by atmospheric plasma spray (APS) as the deposition coating technique. A hydroxyapatite (HAp) APS coating, a commercial bioceramic coating, is chosen as the control. The in-situ observation showed that Sr-HT powders experience temperatures during plasma processing that exceeded their melting point to form a coating well adhered to the substrate. It was demonstrated that the Sr-HT coating possessed superior antibacterial properties against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Pseudomonas aeruginosa. In addition, the Sr-HT coating exhibits a uniform distribution of hardness and elastic moduli, higher nanohardness and elastic moduli compared to the equivalent properties of the HAp coating. Moreover, the Sr-HT coating outperforms the HAp coating regarding scratch and wear resistance. The bonding and shear strength of the Sr-HT coating are higher than the values required for orthopedic implant coatings. The Sr-HT coating also allows efficient zinc, silicon and strontium ions release when immersed in cell culture media. In summary, the antibacterial capabilities and the mechanical properties of the Sr-HT APS coating exceed those of the commercial HAp APS coating. Therefore, Sr-HT APS coatings are candidates for bioceramic coating applications in orthopedic implants.(c) 2022 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available