4.6 Article

Using Causal Loop Diagrams to Conceptualize Groundwater as a Social-Ecological System

Journal

FRONTIERS IN ENVIRONMENTAL SCIENCE
Volume 10, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fenvs.2022.836206

Keywords

complex adaptive systems; Nauru; causal loop diagrams; conceptual modelling; feedbacks

Ask authors/readers for more resources

Groundwater systems are social-ecological systems that require holistic approaches for study and management. Causal loop diagrams are ideal for translating conceptual frameworks into operational models. This paper applies causal loop diagrams to the groundwater system in Nauru and identifies the social subsystem as the main driver of system dynamics.
Groundwater systems are social-ecological systems (SES) in which human communities, groundwater dependent ecosystems and groundwater resources are linked, and therefore, cannot be studied in isolation. Complex adaptive systems are characterised by non-linear relationships and feedbacks between the system variables. Modeling feedbacks between social and ecological variables of groundwater systems requires a shift from traditional hydrogeological studies to more holistic approaches that simulate groundwater as a SES. A framework was developed to study and manage groundwater as a social-ecological system. Operationalizing the framework to develop empirical models that consider the social and ecological aspects of groundwater dynamics requires translating the framework components into measurable model inputs that capture the key relationships between social and ecological components. Causal loop diagrams (CLD) are an ideal tool for translating between a conceptual framework and an operational, empirical model. Causal loop diagrams can reveal system complexity associated with the interaction of social, ecological and hydrological components, and identify key inputs that need to be considered to model groundwater as a SES. This paper applies CLD to conceptualize the feedbacks between the social, ecological and hydrological components of a groundwater system. The concept is applied to the groundwater system in the island of Nauru, and shows that two balancing feedbacks help maintain the system in a precarious state of usability while several reinforcing feedbacks in the social subsystem apply constant pressure to the system. The CLD reveals that the social subsystem is large and complex, even though the island population is small (approximately 10,000 people). It also demonstrates that the social system is by far the larger disruptor and has the greater potential to alter system states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available