4.7 Article

Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits

Journal

JOURNAL OF CELL BIOLOGY
Volume 214, Issue 1, Pages 103-119

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.201605101

Keywords

-

Categories

Funding

  1. NIH [ZIA NS003029, ZIA NS002946]
  2. Intramural Research Program of NINDS

Ask authors/readers for more resources

Although neuronal regeneration is a highly energy-demanding process, axonal mitochondria! transport progressively declines with maturation. Mature neurons typically fail to regenerate after injury, thus raising a fundamental question as to whether mitochondrial transport is necessary to meet enhanced metabolic requirements during regeneration. Here, we reveal that reduced mitochondrial motility and energy deficits in injured axons are intrinsic mechanisms controlling regrowth in mature neurons. Axotomy induces acute mitochondria! depolarization and ATP depletion in injured axons. Thus, mature neuron-associated increases in mitochondria-anchoring protein syntaphilin (SNPH) and decreases in mitochondrial transport cause local energy deficits. Strikingly, enhancing mitochondria! transport via genetic manipulation facilitates regenerative capacity by replenishing healthy mitochondria in injured axons, thereby rescuing energy deficits. An in vivo sciatic nerve crush study further shows that enhanced mitochondrial transport in snph knockout mice accelerates axon regeneration. Understanding deficits in mitochondria! trafficking and energy supply in injured axons of mature neurons benefits development of new strategies to stimulate axon regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available