4.7 Article

Potassium and Silicon Synergistically Increase Cadmium and Lead Tolerance and Phytostabilization by Quinoa through Modulation of Physiological and Biochemical Attributes

Journal

TOXICS
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/toxics10040169

Keywords

metal contamination; stomatal conductance; phytostabilization; oxidative stress; silicon

Funding

  1. Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah [G: 660-130-1441]
  2. DSR

Ask authors/readers for more resources

The combined stress of Cd and Pb was more detrimental than their separate application to plant biomass, chlorophyll content, and stomatal conductance. However, the supplementation of metal-stressed plants with 10 mM K and 1.0 mM Si, particularly in combination, caused a significant increase in growth, stomatal conductance, and pigment content of plants. Additionally, oxidative stress induced by metals was lessened under the combined application of K and Si.
Cadmium (Cd) and lead (Pb) contaminated soils have increased recently, resulting in limited crop productivity. The ameliorative role of potassium (K) and silicon (Si) is well established in plants under heavy metals stress; however, their combined role under the co-contamination of Cd and Pb is not well understood. We hypothesized that the synergistic application of K and Si would be more effective than their sole treatment for increasing the Pb and Cd tolerance and phytostabilization potential of quinoa (Chenopodium quinoa Willd.). In the current study, quinoa genotype 'Puno' was exposed to different concentrations of Cd (0, 200 mu M), Pb (0, 500 mu M) and their combination with or without 10 mM K and 1.0 mM Si supplementation. The results revealed that the combined stress of Cd and Pb was more detrimental than their separate application to plant biomass (66% less than the control), chlorophyll content and stomatal conductance. Higher accumulation of Pb and Cd led to a limited uptake of K and Si in quinoa plants. The supplementation of metal-stressed plants with 10 mM K and 1.0 mM Si, particularly in combination, caused a significant increase in the growth, stomatal conductance and pigment content of plants. The combined stress of Cd and Pb resulted in an overproduction of H2O2 (11-fold) and TBARS (13-fold) and a decrease in membrane stability (59%). Oxidative stress induced by metals was lessened by 8-fold, 9-fold, 7-fold and 11-fold increases in SOD, CAT, APX and POD activities, respectively, under the combined application of K and Si. It is concluded that the exogenous supply of K and Si in combination is very promising for increasing Cd and Pb tolerance and the phytostabilization potential of quinoa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available