4.7 Article

MOF-Derived Porous Fe3O4/RuO2-C Composite for Efficient Alkaline Overall Water Splitting

Journal

ACS APPLIED ENERGY MATERIALS
Volume 5, Issue 5, Pages 6059-6069

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.2c00471

Keywords

nanoparticle; porous; bifunctional electrocatalyst; water splitting; synergistic interaction

Funding

  1. NISER
  2. Department of Atomic Energy (DAE), India

Ask authors/readers for more resources

Researchers synthesized a porous and interfaces-rich Fe3O4/RuO2-C composite catalyst from Metal organic frameworks (MOF) material, showing excellent oxygen evolution and hydrogen evolution reaction activity and stability in alkaline media.
Development of highly active, durable, bifunctional electrocatalysts for overall water splitting is of great importance to enhance the use of hydrogen energy. Herein, we synthesize a porous and interfaces-rich Fe3O4/RuO2-C composite from the Metal organic frameworks (MOF) material for overall water splitting in alkaline media. The Fe3O4/RuO2-C catalyst showed superior oxygen evolution reaction (OER) with high faradic efficacy. It requires 268 mV overpotential to achieve the current density of 20 mA/cm(2). The catalyst also exhibited good hydrogen evolution reaction (HER) with a current density of 10 mA/cm(2) at an overpotential of 94 mV. The stability test confirmed a remarkable long-term OER and HER stability of this catalyst in alkaline media. In addition, the Fe3O4/RuO2-C catalyst was also used as cathode and anode material for overall water splitting. It showed superior activity and stability in alkaline media with 10 mA/cm(2) current density at 1.595 V cell potential. The excellent electrocatalytic activity of the Fe3O4/RuO2-C catalyst can be attributed to its porous structure, synergistic interaction between the components, the presence of hetero-interfaces, high electrochemical surface area etc. This work may provide an opportunity to design a bifunctional electrocatalyst for the development of anion exchange membrane water electrolyzers (AEMWEs).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available