4.5 Article

An iron chelation-based combinatorial anticancer therapy comprising deferoxamine and a lactate excretion inhibitor inhibits the proliferation of cancer cells

Journal

CANCER & METABOLISM
Volume 10, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s40170-022-00284-x

Keywords

Hypoxia; Antitumor effect; Iron chelator; Energy metabolisms; Lactate; Glutaminase; Autophagy

Funding

  1. Japan Society for the Promotion of Science [24659369, 18K15815, 20K08289, 16H05287]
  2. Grants-in-Aid for Scientific Research [24659369, 20K08289, 16H05287, 18K15815] Funding Source: KAKEN

Ask authors/readers for more resources

The combination therapy of deferoxamine (DFO) and alpha-cyano-4-hydroxy cinnamate (CHC) was found to be effective in cancer cells, where treatment with DFO resulted in an increase in lactate levels. DFO-resistant cells exhibited metabolic changes and increased lactate production in response to DFO treatment. However, no synergistic effect was observed in human liver cancer cells.
Background Although iron chelation has garnered attention as a novel therapeutic strategy for cancer, higher levels of efficacy need to be achieved. In the present study, we examined the combinatorial effect of deferoxamine (DFO), an iron chelator, and alpha-cyano-4-hydroxy cinnamate (CHC), a suppressor of lactate excretion, on the proliferation of cancer cell lines. Methods We established a deferoxamine (DFO)-resistant cell line by culturing HeLa cells in media containing increasing concentrations of DFO. Metabolome and gene expression analyses were performed on these cells. Synergistic effect of the drugs on the cells was determined using an in vitro proliferation assay, and the combination index was estimated. Results DFO-resistant HeLa cells exhibited enhanced glycolysis, salvage cycle, and de novo nucleic acid synthesis and reduced mitochondrial metabolism. As DFO triggered a metabolic shift toward glycolysis and increased lactate production in cells, we treated the cancer cell lines with a combination of CHC and DFO. A synergistic effect of DFO and CHC was observed in HeLa cells; however, the same was not observed in the human liver cancer cell line Huh7. We hypothesized that the efficacy of the combination therapy in cancer cells depends on the degree of increase in lactate concentration upon DFO treatment. Conclusion Combination therapy involving administration of DFO and CHC is effective in cancer cells wherein DFO treatment results in an elevation in lactate levels. Our findings illustrate that the DFO-induced enhanced glycolysis provides specific targets for developing an efficient anticancer combinatorial therapy involving DFO. These findings will be beneficial for the development of novel cancer chemotherapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available