4.7 Article

Engineering hypertrophic cartilage grafts from lipoaspirate for critical-sized calvarial bone defect reconstruction: An adipose tissue-based developmental engineering approach

Journal

Publisher

WILEY
DOI: 10.1002/btm2.10312

Keywords

adipose tissue; bone defect reconstruction; bone regeneration; developmental engineering; endochondral ossification; hypertrophic cartilage

Funding

  1. National Natural Science Foundation of China [81871571]
  2. Shanghai Municipal Key Clinical Specialty [shslczdzk00901]
  3. Shanghai Pujiang Program [2019PJD023]

Ask authors/readers for more resources

Developmental engineering of hypertrophic cartilaginous constructs engineered from adipose tissue can effectively heal large bone defects, exhibiting superior regenerative capacity and tissue integration.
Developmental engineering of living implants from different cell sources capable of stimulating bone regeneration by recapitulating endochondral ossification (ECO) is a promising strategy for large bone defect reconstruction. However, the clinical translation of these cell-based approaches is hampered by complex manufacturing procedures, poor cell differentiation potential, and limited predictive in vivo performance. We developed an adipose tissue-based developmental engineering approach to overcome these hurdles using hypertrophic cartilaginous (HyC) constructs engineered from lipoaspirate to repair large bone defects. The engineered HyC constructs were implanted into 4-mm calvarial defects in nude rats and compared with decellularized bone matrix (DBM) grafts. The DBM grafts induced neo-bone formation via the recruitment of host cells, while the HyC pellets supported bone regeneration via ECO, as evidenced by the presence of remaining cartilage analog and human NuMA-positive cells within the newly formed bone. However, the HyC pellets clearly showed superior regenerative capacity compared with that of the DBM grafts, yielding more new bone formation, higher blood vessel density, and better integration with adjacent native bone. We speculate that this effect arises from vascular endothelial growth factor and bone morphogenetic protein-2 secretion and mineral deposition in the HyC pellets before implantation, promoting increased vascularization and bone formation upon implantation. The results of this study demonstrate that adipose-derived HyC constructs can effectively heal large bone defects and present a translatable therapeutic option for bone defect repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available