4.7 Article

Non-Fused Polymerized Small Molecular Acceptors for Efficient All-Polymer Solar Cells

Related references

Note: Only part of the references are listed.
Article Engineering, Environmental

Fine-tuned crystallinity of polymerized non-fullerene acceptor via molecular engineering towards efficient all-polymer solar cell

Yuxiang Li et al.

Summary: By optimizing the central core and pi-spacer of polymerized non-fullerene acceptors, the solid-state crystallinity can be regulated to improve the performance of all-polymer solar cells, especially the short-circuit current density and open circuit voltage. Chlorinated PY-2T2Cl can form an ideal blend morphology when paired with polymer donor, leading to a higher power conversion efficiency in the resulting solar cells.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Physical

Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology

Yue Zhang et al.

Summary: By using 1-chloronaphthalene as the solvent additive during the deposition of the polymer acceptor in the top layer and applying thermal annealing on the entire active layer, the favorable morphology led to greatly enhanced exciton splitting efficiency, reduced trap density, improved charge transport, and suppressed charge recombination loss, resulting in a high power conversion efficiency and the highest fill factor for all-PSCs based on polymerized small molecule acceptors up to date. This work demonstrates an effective strategy for morphology optimization of layer-by-layer processed all-polymer solar cells.

NANO ENERGY (2022)

Review Chemistry, Multidisciplinary

Polymerized Small-Molecule Acceptors for High-Performance All-Polymer Solar Cells

Zhi-Guo Zhang et al.

Summary: All-polymer solar cells have attracted significant research interest due to their good film formation, stable morphology, and mechanical flexibility. The strategy of polymerizing small-molecule acceptors to construct new-generation polymer acceptors has significantly increased the power conversion efficiency, but current challenges and future prospects still need to be addressed.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Editorial Material Physics, Condensed Matter

All-polymer solar cells

Baoqi Wu et al.

JOURNAL OF SEMICONDUCTORS (2021)

Article Chemistry, Multidisciplinary

An A-D-A′-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency

Xingzheng Liu et al.

Summary: In recent years, significant improvements have been made in the power conversion efficiency (PCE) of organic solar cells (OSCs) by exploring new active layer materials, especially high efficiency acceptors. Unfused-ring acceptors (UFAs) have attracted attention for their advantages of simple synthesis and low cost compared to fused-ring acceptors. The synthesis of a new UFA BTzO-4F incorporating benzotriazole moiety and intramolecular noncovalent interactions has led to a record PCE of 13.8% for UFAs, demonstrating the great potential of UFAs for high performance OSCs.

SCIENCE CHINA-CHEMISTRY (2021)

Article Chemistry, Multidisciplinary

15.4% Efficiency all-polymer solar cells

Long Zhang et al.

Summary: By tuning the molecular weights of the polymer donor, researchers achieved a record-high power conversion efficiency in all-polymer solar cells. The combination of polymer donors with a newly reported polymer acceptor resulted in unprecedented high PCE and fill factor values. Detailed morphology investigation revealed the importance of proper phase separation in achieving superior device performance in all-polymer solar cells.

SCIENCE CHINA-CHEMISTRY (2021)

Article Multidisciplinary Sciences

Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies

Ming Zhang et al.

Summary: By using quaternary blends, double cascading energy level alignment is achieved in bulk heterojunction organic photovoltaic active layers, optimizing light absorption, carrier transport, and charge-transfer state energy levels for higher power conversion efficiencies. The chemical structures of donors and acceptors allow control over electronic structure and charge-transfer state energy levels, enabling manipulation of hole-transfer rates, carrier transport, and non-radiative recombination losses.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Physical

Fluorinated End Group Enables High-Performance All-Polymer Solar Cells with Near-Infrared Absorption and Enhanced Device Efficiency over 14%

Han Yu et al.

Summary: Fluorination of end groups enhances the performance of polymer acceptors, leading to higher power conversion efficiency in all-polymer solar cells.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

High-Performance All-Polymer Solar Cells with a Pseudo-Bilayer Configuration Enabled by a Stepwise Optimization Strategy

Qiang Wu et al.

Summary: In this study, a high-efficiency PBDB-T/PYT all-organic solar cell was successfully fabricated using a special LbL deposition technique, achieving an efficiency of 15.17% through synergistic control of additive dosages. It was found that this synergistic control of additive dosages was also confirmed in other photovoltaic systems.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Layer-by-Layer Processed Ternary Organic Photovoltaics with Efficiency over 18%

Lingling Zhan et al.

Summary: This study proposes and demonstrates a method to optimize the morphology of the active layer in organic photovoltaic devices by combining the layer-by-layer (LbL) procedure and the ternary strategy. By adding an asymmetric electron acceptor to the binary donor:acceptor host, a vertical phase distribution is formed, leading to improved efficiency in OPV devices.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor

Huiting Fu et al.

Summary: A new class of narrow-bandgap polymer acceptors, the PZT series, was developed to address challenges in all-polymer solar cells, resulting in improved performance due to red-shifted optical absorption and up-shifted energy levels. The regioregular PZT-gamma was specifically designed to avoid isomer formation during polymerization, leading to enhanced efficiency, short-circuit current density, and energy loss in all-PSCs.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Physical

Simple Nonfused Ring Electron Acceptors with 3D Network Packing Structure Boosting the Efficiency of Organic Solar Cells to 15.44%

Xiaodong Wang et al.

Summary: NFREAs with increasing pi-conjugation length show enhanced molar extinction coefficient and electron mobility in blend films. The molecular conformation of 2BTh-2F is planar, supported by S···N and S···O intramolecular interactions, and it forms a 3D network packing structure compared to the 2D packing of 2Th-2F. 2BTh-2F:PBDB-T-based organic solar cells achieve a high power conversion efficiency of 14.53%, reaching a record efficiency of 15.44% when D18 is used as the donor polymer.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

High-Efficiency All-Polymer Solar Cells with Poly-Small-Molecule Acceptors Having π-Extended Units with Broad Near-IR Absorption

Ning Su et al.

Summary: Two new poly-small-molecule acceptors, PYN-BDT and PYN-BDTF, with p-extended naphthalene rings, demonstrated broad optical cross-section macromolecular absorbers in all-polymer solar cells, leading to enhanced power conversion efficiencies. The blend morphology, GIWAXS, charge transport, exciton and carrier dynamics, and impedance-based analysis show that extending individual polymer acceptor blocks represents an efficient strategy to achieve high-performance cells with enhanced metrics.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

Configurational Isomers Induced Significant Difference in All-Polymer Solar Cells

Hengtao Wang et al.

Summary: The design and synthesis of polymer acceptors play a crucial role in the performance of all-polymer solar cells. By separating and controlling the monomer configuration, two isomeric polymeric acceptors were produced, with the gamma-based polymer showing the highest power conversion efficiency. The results demonstrate that configurational control is a promising strategy for achieving high-performance polymer acceptors.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering

Xin Zhang et al.

Summary: NFREAs have simple synthetic routes, high efficiencies, and low costs, but their efficiencies are still far behind those of FREAs. This study designed new NFREAs with precisely tuned electronic properties, charge transport, and energy loss to achieve high-performance solar cell efficiencies.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors

Rui Sun et al.

Summary: The study focuses on developing high-performance all-polymer solar cells by designing a novel polymer acceptor PY2F-T and enhancing efficiency through ternary blend with PYT in the PM6: PY2F-T host system. This approach significantly improves power conversion efficiency and stability, marking a promising future for the application of all-PSCs.

JOULE (2021)

Article Chemistry, Multidisciplinary

Side-Chain Engineering for Enhancing the Molecular Rigidity and Photovoltaic Performance of Noncovalently Fused-Ring Electron Acceptors

Xin Zhang et al.

Summary: Side-chain engineering is an effective strategy for regulating solubility and packing behavior of organic materials. The introduction of terminal side-chains in a new noncovalently fused-ring electron acceptor has shown to enhance molecular rigidity and intermolecular pi-pi stacking, resulting in record power conversion efficiency for organic solar cells.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Regulating the Aggregation of Unfused Non-Fullerene Acceptors via Molecular Engineering towards Efficient Polymer Solar Cells

Yuxiang Li et al.

Summary: This study successfully optimized the film structure of polymer solar cells by systematically adjusting the molecular aggregation patterns of unfused non-fullerene acceptors (UF-NFAs), leading to improved efficiency of the photovoltaic devices.

CHEMSUSCHEM (2021)

Article Multidisciplinary Sciences

Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell

Lijiao Ma et al.

Summary: Non-fullerene acceptors based on non-fused conjugated structures have potential for low-cost organic photovoltaic cells, but their efficiencies are lower than those of fused-ring NFAs. A new bithiophene-based non-fused core, TT-Pi, was designed, leading to the development of a completely non-fused NFA, A4T-16, which achieved a high PCE of 15.2% with 84% retention after 1300 hours under simulated AM 1.5 G illumination. This work provides insight into molecule design of non-fused NFAs through molecular geometry control.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Physical

Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency

Pengqing Bi et al.

Summary: Introducing HDO-4Cl increased the exciton diffusion length in the acceptor phase, reducing non-radiative charge recombination and improving photon utilization efficiency in PBDB-TF: eC9-based OPV cells. This led to achieving a high-efficiency OPV cell with outstanding power conversion efficiency, demonstrating the effectiveness of regulating exciton behaviors in reducing energy loss.

JOULE (2021)

Review Energy & Fuels

Non-fused ring acceptors for organic solar cells

Mingqun Yang et al.

Summary: Organic solar cells (OSCs) have seen rapid advancements in power conversion efficiencies with the emergence of non-fused ring acceptors (NFRAs) as potential replacements for the complex and costly multiple fused ring acceptors (NFAs). Challenges and future directions are discussed to achieve high performance and low synthetic complexity simultaneously in the development of new NFRAs for practical application in OSCs.

ENERGY MATERIALS (2021)

Article Chemistry, Physical

All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor

Tao Jia et al.

Summary: This study designed a series of large-bandgap polymer donors and validated their device performances in all-polymer solar cells by combining them with a polymer acceptor, achieving high efficiency with a maximum of 15.8%. The systems showed more efficient charge transfer and less charge recombination as the energy-level offsets increased, leading to improved short-circuit current density, fill factors, and power conversion efficiency.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Physical

3,4-Dicyanothiophene-a Versatile Building Block for Efficient Nonfullerene Polymer Solar Cells

Bo Zhang et al.

ADVANCED ENERGY MATERIALS (2020)

Article Nanoscience & Nanotechnology

Nonfused Nonfullerene Acceptors with an A-D-A′-D-A Framework and a Benzothiadiazole Core for High-Performance Organic Solar Cells

Shuting Pang et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Multidisciplinary Sciences

18% Efficiency organic solar cells

Qishi Liu et al.

SCIENCE BULLETIN (2020)

Review Materials Science, Multidisciplinary

Recent progress of all-polymer solar cells - From chemical structure and device physics to photovoltaic performance

Hang Yin et al.

MATERIALS SCIENCE & ENGINEERING R-REPORTS (2020)

Editorial Material Multidisciplinary Sciences

The new era for organic solar cells: polymer donors

Chunhui Duan et al.

SCIENCE BULLETIN (2020)

Editorial Material Multidisciplinary Sciences

The new era for organic solar cells: polymer acceptors

Chunhui Duan et al.

SCIENCE BULLETIN (2020)

Review Chemistry, Multidisciplinary

Polymer Acceptors Containing B←N Units for Organic Photovoltaics

Ruyan Zhao et al.

ACCOUNTS OF CHEMICAL RESEARCH (2020)

Article Nanoscience & Nanotechnology

Toward Efficient All-Polymer Solar Cells via Halogenation on Polymer Acceptors

Yuxiang Li et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Chemistry, Multidisciplinary

A Non-Conjugated Polymer Acceptor for Efficient and Thermally Stable All-Polymer Solar Cells

Qunping Fan et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Nanoscience & Nanotechnology

A Structurally Simple but High-Performing Donor-Acceptor Polymer for Field-Effect Transistor Applications

Filip Anies et al.

ADVANCED ELECTRONIC MATERIALS (2020)

Article Chemistry, Physical

A Simple n-Dopant Derived from Diquat Boosts the Efficiency of Organic Solar Cells to 18.3%

Yuanbao Lin et al.

ACS ENERGY LETTERS (2020)

Review Chemistry, Multidisciplinary

Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells

Changyeon Lee et al.

CHEMICAL REVIEWS (2019)

Article Multidisciplinary Sciences

Simple non-fused electron acceptors for efficient and stable organic solar cells

Zhi-Peng Yu et al.

NATURE COMMUNICATIONS (2019)

Review Chemistry, Multidisciplinary

All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects

Gang Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Review Chemistry, Multidisciplinary

Imide-Functionalized Polymer Semiconductors

Huiliang Sun et al.

CHEMISTRY-A EUROPEAN JOURNAL (2019)

Article Materials Science, Multidisciplinary

Tuning Backbone Planarity in Thiadiazolobenzotriazole-Bis(thienothiophenyl)ethylene Copolymers for Organic Field-Effect Transistors

Sultan Otep et al.

ACS APPLIED POLYMER MATERIALS (2019)

Article Chemistry, Multidisciplinary

Toward Efficient Polymer Solar Cells Processed by a Solution-Processed Layer-By-Layer Approach

Yong Cui et al.

ADVANCED MATERIALS (2018)

Article Nanoscience & Nanotechnology

Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells

Lingling Zhan et al.

ACS APPLIED MATERIALS & INTERFACES (2018)

Article Chemistry, Multidisciplinary

Constructing a Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells

Zhi-Guo Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Article Chemistry, Multidisciplinary

Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells

Fan Yang et al.

MATERIALS CHEMISTRY FRONTIERS (2017)

Article Chemistry, Multidisciplinary

Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap

Huifeng Yao et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Article Chemistry, Physical

Exploring the origin of high optical absorption in conjugated polymers

Michelle S. Vezie et al.

NATURE MATERIALS (2016)

Article Chemistry, Multidisciplinary

7.7% Efficient All-Polymer Solar Cells

Ye-Jin Hwang et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells

Yuze Lin et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Organic

Effect of Fluorination of 2,1,3-Benzothiadiazole

Christian B. Nielsen et al.

JOURNAL OF ORGANIC CHEMISTRY (2015)

Article Multidisciplinary Sciences

Flexible, highly efficient all-polymer solar cells

Taesu Kim et al.

NATURE COMMUNICATIONS (2015)

Review Chemistry, Multidisciplinary

Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale

Jonathan Rivnay et al.

CHEMICAL REVIEWS (2012)

Article Chemistry, Multidisciplinary

Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells

Samuel C. Price et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2011)

Review Chemistry, Multidisciplinary

Device physics of polymer:fullerene bulk heterojunction solar cells

Paul W. M. Blom et al.

ADVANCED MATERIALS (2007)

Article Chemistry, Multidisciplinary

Design rules for donors in bulk-heterojunction solar cells -: Towards 10 % energy-conversion efficiency

MC Scharber et al.

ADVANCED MATERIALS (2006)