4.8 Review

Three-Dimensional MXenes for Supercapacitors: A Review

Journal

SMALL METHODS
Volume 6, Issue 4, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smtd.202101537

Keywords

MXenes; supercapacitors; 3D; preparation methods

Funding

  1. National Natural Science Foundation of China [U2004212, 51572011, 51802012]

Ask authors/readers for more resources

This article reviews the application prospects and challenges of MXene materials in the field of supercapacitors, and introduces the preparation methods for transforming 2D MXenes into 3D structures and their performance in supercapacitors.
Supercapacitors have the characteristics of high power density and long cycle life, but the low energy density limits their further development. The 2D transitional metal carbides/nitrides (MXenes) show great application prospects in the field of supercapacitors due to their superior volumetric capacitance, metallic-like conductivity, tunable surface terminations, and structural advantages. However, like other 2D materials, MXenes suffer from the inevitable problem of nanosheet restacking and aggregation, which reduces the overall active surface sites and blocks the accessibility of the electrolyte ions. The transformation of 2D MXene nanosheets into 3D architectures is proven effective to overcome the restacking problem. The review briefly summarizes the preparation strategies of 3D MXene materials, including template-assisted method, framework-assisted method, chemical assembly method, foaming method, and other methods with the discussion centered on the performances of 3D MXenes in supercapacitors. Finally, an outlook on the current progress and opportunities is given to highlight the increasing popularity of 3D MXenes in supercapacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available