4.8 Article

Probing lattice defects in crystalline battery cathode using hard X-ray nanoprobe with data-driven modeling

Journal

ENERGY STORAGE MATERIALS
Volume 45, Issue -, Pages 647-655

Publisher

ELSEVIER
DOI: 10.1016/j.ensm.2021.12.019

Keywords

Lattice defects; Crystalline battery cathode; Hard X-ray nanoprobe; Machine learning; Neural network

Funding

  1. US Department of Energy
  2. Brookhaven National Laboratory [DE-AC02-76SF00515]
  3. Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory [DE-AC02-76SF00515]
  4. [DE-SC0012704]

Ask authors/readers for more resources

In this study, a unique combination of X-ray nanoprobe diffractive imaging and advanced machine learning techniques is used to reveal the lattice defects and grain boundaries in a single-crystalline lithium-ion battery cathode material. The results show the rearrangement of the grain boundaries and local crystallinity upon mild thermal annealing, providing valuable empirical guidance for defect-engineering strategies to improve the cathode materials.
Lattice defects, e.g., dislocations and grain boundaries, critically impact the properties of crystalline battery cathode materials. A longstanding challenge is to probe the meso -scale heterogeneity and evolution of lattice defects with sensitivity to atomic-scale details. Herein, we tackle this issue with a unique combination of X-ray nanoprobe diffractive imaging and advanced machine learning techniques. The domains with different lattice defect configuration within a single-crystalline LiCoO(2 )cathode particle are faithfully revealed using our approach. We further visualize the rearrangement of grain boundaries and local crystallinity upon mild thermal annealing. These results pave a direct way to the understanding of crystalline battery materials' response under external stimuli with high fidelity, which provides valuable empirical guidance to defect-engineering strategies for improving the cathode materials against aggressive battery operation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available