4.8 Article

Coordinatively Deficient Single-atom Fe-N-C Electrocatalyst with Optimized Electronic Structure for High-performance Lithium-sulfur Batteries

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a High-Efficiency Lithium Polysulfide Conversion Process

Xin Wang et al.

Summary: Tensile-strained Mxene/CNT porous microspheres were developed as an electrocatalyst for the lithium polysulfide redox reaction, with internal stress, macroporous framework, and CNT interwoven enhancing their electrochemical performance.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Nanoscience & Nanotechnology

A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites

Chen Zhao et al.

Summary: A novel cathode design for Li-S batteries utilizing single-atom Co catalyst and ZnS nanoparticles has successfully suppressed the shuttling effect, resulting in stable cycling and high energy performances.

NATURE NANOTECHNOLOGY (2021)

Article Chemistry, Physical

Unsaturated coordination polymer frameworks as multifunctional sulfur reservoir for fast and durable lithium-sulfur batteries

Yanfei Zhu et al.

Summary: This research explores the coordinative unsaturation in ferric hexacyanoferrate for improved lithium-sulfur batteries, demonstrating fast, stable, and efficient sulfur electrochemistry with good rate capability and excellent cyclic stability. The coordinatively unsaturated Fe sites offer higher adsorbability and conversion catalytic activity to polysulfides, enabling enhanced performance in Li-S batteries.

NANO ENERGY (2021)

Review Chemistry, Applied

Single-atom catalysts for metal-sulfur batteries: Current progress and future perspectives

Ru Xiao et al.

Summary: Metal-sulfur batteries are considered promising for next generation energy storage systems due to their high theoretical energy density and low cost. However, slow redox kinetics of sulfur species and shuttle effect lead to performance decay. Recently, single-atom catalysts have been introduced to improve sulfur conversion kinetics in metal-sulfur systems.

JOURNAL OF ENERGY CHEMISTRY (2021)

Article Chemistry, Physical

O-, N-Coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries

Yanan Liu et al.

Summary: In this study, single manganese atoms implanted in oxygen and nitrogen double-doped hollow carbon sphere frameworks were prepared as electrocatalyst and anchoring sites for lithium sulfur batteries. The results demonstrated the importance of single atom in accelerating polysulfides transformation and suppressing the shuttle effect in lithium sulfur batteries, leading to enhanced cycling stability. The abundant pores in conductive carbon frameworks facilitated electrolyte diffusion and promoted dynamic protection of the cathode structure during cycling.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium-Sulfur Batteries

Peng Wang et al.

Summary: The use of catalytic materials to address the sluggish kinetics and shuttle effect in lithium-sulfur batteries is crucial, with single-atom catalysts on graphene modifiers showing improved electrochemical performance.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Applied

Regulating the d band in WS2@NC hierarchical nanospheres for efficient lithium polysulfide conversion in lithium-sulfur batteries

Jintao Liu et al.

Summary: A versatile route to prepare multi-functional nanocomposites with tuable hierarchical structure via ammonium hydroxide induced self-assembly was reported for improving the performance of lithium-sulfur batteries. The as-prepared WS2@NC composite exhibits superior performance due to higher surface area and total pore volume, easier access to electrolyte, better volume change buffering ability, and more prominent shifting and charge compensation from d band of W compared to Co. The density function theory calculation reveals the higher binding energy towards LiPSs and lower energy barrier for Li+ diffusion on the surface of WS2, contributing to enhanced electronic concentration and more hybridization of d-p orbitals in the Fermi level for improved lithium polysulfide interfacial redox and conversion dynamics.

JOURNAL OF ENERGY CHEMISTRY (2021)

Article Chemistry, Physical

Aligned sulfur-deficient ZnS1-x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries

Jiayi Wang et al.

Summary: By combining architectural and sulfur-vacancy engineering, the interaction between ZnS and active sulfur is improved, facilitating ion/electron transfer, immobilizing lithium polysulfide, and accelerating sulfur reaction kinetics.

NANO ENERGY (2021)

Article Chemistry, Physical

Amorphous-crystalline-heterostructured niobium oxide as two-in-one host matrix for high-performance lithium-sulfur batteries

Jiayi Wang et al.

Summary: The study introduces a unique niobium oxide matrix as a two-in-one host for high-performance lithium-sulfur batteries, exhibiting excellent cycling performance and rate capability. The heterostructured design shows simultaneous stabilization and catalyzation for sulfur electrochemistry in the cathode matrix, while also facilitating lithium redox kinetics and uniformizing lithium nucleation/growth behaviors in the anode matrix, leading to enhanced battery performance and stability.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Multidisciplinary Sciences

Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity

Huishan Shang et al.

NATURE COMMUNICATIONS (2020)

Review Chemistry, Multidisciplinary

Rational design of two-dimensional nanomaterials for lithium-sulfur batteries

Milan Jana et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Review Chemistry, Multidisciplinary

A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics

Won-Gwang Lim et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium-Sulfur Batteries

Jin Xie et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions

Jinqiang Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Review Chemistry, Physical

A review on the status and challenges of electrocatalysts in lithium-sulfur batteries

Jiarui He et al.

ENERGY STORAGE MATERIALS (2019)

Review Chemistry, Physical

Metal-based nanostructured materials for advanced lithium-sulfur batteries

Juan Balach et al.

JOURNAL OF MATERIALS CHEMISTRY A (2018)

Editorial Material Chemistry, Physical

Understanding the Lithium Sulfur Battery System at Relevant Scales

Jie Xiao

ADVANCED ENERGY MATERIALS (2015)

Review Chemistry, Multidisciplinary

Nanostructured sulfur cathodes

Yuan Yang et al.

CHEMICAL SOCIETY REVIEWS (2013)