4.4 Article

Cosmological Parameter Estimation Using Current and Future Observations of Strong Gravitational Lensing

Journal

UNIVERSE
Volume 8, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/universe8050254

Keywords

cosmological parameters; strong gravitational lensing; time delay cosmology; velocity dispersion; late-universe probe

Funding

  1. National Natural Science Foundation of China [11975072, 11835009, 11875102, 11690021]
  2. Liaoning Revitalization Talents Program [XLYC1905011]
  3. Fundamental Research Funds for the Central Universities [N2105014, N2005030]
  4. National Program for Support of Top-Notch Young Professionals [W02070050]
  5. National 111 Project of China [B16009]
  6. Science Research Grants from the China Manned Space Project [CMS-CSST-2021-B01]

Ask authors/readers for more resources

The paper investigates the use of strong gravitational lensing systems (SGL) to more accurately measure cosmological parameters, and finds that combining the two effects of velocity dispersion and time delay can break the degeneracies between parameters, leading to tighter constraints.
The remarkable development of cosmology benefits from the increasingly improved measurements of cosmic distances, including absolute distances and relative distances. In recent years, however, the emerged cosmological tensions have motivated us to explore independent and precise late-universe probes. The two observational effects of strong gravitational lensing (SGL), the velocity dispersions of lens galaxies and the time delays between multiple images can provide measurements of relative and absolute distances, respectively, and their combination makes it possible to break the degeneracies between cosmological parameters and enable tight constraints on them. In this paper, we combine the observed 130 SGL systems with velocity-dispersion measurements and 7 SGL systems with time-delay measurements to constrain dark-energy cosmological models. It is found that the combination of the two effects does not significantly break the degeneracies between cosmological parameters as expected. However, with the simulations of 8000 SGL systems with well-measured velocity dispersions and 55 SGL systems with well-measured time delays based on the forthcoming LSST survey, we find that the combination of two effects can significantly break the parameter degeneracies, and make the constraint precision of cosmological parameters meet the standard of precision cosmology. We conclude that the observations of SGL will become a useful late-universe probe for precisely measuring cosmological parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available