4.6 Article

Ketoconazole-Loaded Cationic Nanoemulsion: In Vitro-Ex Vivo-In Vivo Evaluations to Control Cutaneous Fungal Infections

Journal

ACS OMEGA
Volume 7, Issue 23, Pages 20267-20279

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c02219

Keywords

-

Funding

  1. King Saud University, Riyadh, Saudi Arabia [RSP-2021/339]

Ask authors/readers for more resources

The study successfully optimized a cationic nanoemulsion loaded with KTZ for improved topical delivery, showing enhanced drug entrapment efficiency, better drug release behavior, and stronger antifungal activity.
An attempt has been made to optimize ketoconazole (KTZ)-loaded cationic nanoemulsion for topical delivery followed by in vitro, ex vivo, and in vivo evaluations. Central composite design suggested a total of 13 outcomes at 3 factors and 2 levels against 6 responses. Formulations were characterized for globular size, polydispersity index, pH, zeta potential, % entrapment efficiency (% EE), and drug content. Moreover, the optimized KTZ-CNM13 was compared against drug suspension (KTZ-SUS), commercial cream, and anionic nanoemulsion for in vitro drug release, ex vivo permeation, in vitro hemolysis, antifungal assay, in vivo dermal irritancy, and long-term stability. KTZ-CNM13 was found to have a low size (239 nm), an optimal zeta potential (+22.7 mV), a high % EE (89.1%), a spherical shape, a high drug content (98.9%), and a high numerical desirability value (1.0). In vitro drug release behavior of KTZ from KTZ-CNM13 was 7.54- and 1.71-folds higher than those of KTZ-ANM13 and KTZ-SUS, respectively, at 24 h. The permeation rate values were ordered as KTZ-CNM13 > KTZ-ANM13 > KTZ-MKT > KTZ-SUP due to various studied factors. High values of zone of inhibition for KTZ-CNM13 were observed against Candida albicans, Candida glabrata, Candida tropicalis, and Candida krusei as compared to KTZ-SUS. In vitro hemolysis and in vivo irritation studied confirmed the safety concern of the nanoemulsion at the explored composition. Long-term stability result revealed a stable product at the explored temperature for a year. Conclusively, cationic nanoemulsion is a promising approach to deliver KTZ for high permeation and therapeutic efficacy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available