4.6 Article

Continuous Double-Step Esterification Production of Palm Fatty Acid Distillate Methyl Ester Using Ultrasonic Tubular Reactor

Journal

ACS OMEGA
Volume 7, Issue 17, Pages 14666-14677

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.1c07230

Keywords

-

Funding

  1. Postdoctoral Fellowship from Prince of Songkla University
  2. National Science, Research and Innovation Fund (NSRF)
  3. Prince of Songkla University [ENG6505015M]

Ask authors/readers for more resources

Double-step esterification using an ultrasound clamp reactor is an efficient method for producing high purity methyl ester biodiesel from PFAD.
Double-step esterification to produce biodiesel from palm fatty acid distillate (PFAD) was performed by utilizing an ultrasound clamp reactor. Six pairs of ultrasonic clamps were attached to the left and right sides of the stainless-steel tube, and each pair was separated 100 mm apart from each other. Therefore, a total of 12 units of ultrasound clamps distributed 4800 W maximum power (12 x 400 W) throughout the continuous reactor by an ultrasonic generator. To optimize each step of the continuous esterification process for producing methyl ester from PFAD, a response surface methodology was used. The final 93.32 wt % methyl ester purity was attained under a double-step esterification process. For the first step, a 3.75:1 molar ratio of methanol to PFAD (46.4 vol % methanol), 6.6 vol % sulfuric acid, and 400 mm length of ultrasound clamp at 25 L/h PFAD flow rate for converting the PFAD to 60.24 wt % methyl ester were recommended. For the second step, the esterification was repeated under a molar ratio of methanol to the first esterified oil of 2.87:1 (61.6 vol % methanol), 5.6 vol % of sulfuric acid, and 400 mm length of ultrasound clamp at 25 L/h esterified oil flow rate. The ultrasonic clamp reactor achieved high yields of esterified oil and the crude biodiesel in a relatively short residence period of 32 s. To determine the product yields of a double-step esterification process, the maximum yields were 103.9 wt % first esterified oil, 107.6% crude biodiesel, and 98 wt % purified biodiesel when calculated on the basis of 100 vol % initial PFAD. The average energy consumed in the production of double-step esterification biodiesel was 0.05796 kWh/L. Therefore, this current approach has a high potential for producing biodiesel with less energy and requires less time to convert the PFAD to a high purity of methyl ester.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available