4.7 Article

Striga hermonthica Suicidal Germination Activity of Potent Strigolactone Analogs: Evaluation from Laboratory Bioassays to Field Trials

Journal

PLANTS-BASEL
Volume 11, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/plants11081045

Keywords

germination stimulant; witchweed; methyl phenlactonoates (MPs); Nijmegen-1; weed

Categories

Funding

  1. Bill and Melinda Gates Foundation [OPP1136424]
  2. King Abdullah University of Science and Technology
  3. JSPS [18H05266]
  4. Grants-in-Aid for Scientific Research [18H05266] Funding Source: KAKEN
  5. Bill and Melinda Gates Foundation [OPP1136424] Funding Source: Bill and Melinda Gates Foundation

Ask authors/readers for more resources

This study evaluated the efficacy of three potent SL analogs in laboratory, greenhouse, and field conditions for reducing the germination of Striga seeds. The results showed that these analogs have promising potential as simple suicidal agents to combat Striga infestation.
The obligate hemiparasite Striga hermonthica is one of the major global biotic threats to agriculture in sub-Saharan Africa, causing severe yield losses of cereals. The germination of Striga seeds relies on host-released signaling molecules, mainly strigolactones (SLs). This dependency opens up the possibility of deploying SL analogs as suicidal germination agents to reduce the accumulated seed bank of Striga in infested soils. Although several synthetic SL analogs have been developed for this purpose, the utility of these compounds in realizing the suicidal germination strategy for combating Striga is still largely unknown. Here, we evaluated the efficacy of three potent SL analogs (MP3, MP16, and Nijmegen-1) under laboratory, greenhouse, and farmer's field conditions. All investigated analogs showed around a 50% Striga germination rate, equivalent to a 50% reduction in infestation, which was comparable to the standard SL analog GR24. Importantly, MP16 had the maximum reduction of Striga emergence (97%) in the greenhouse experiment, while Nijmegen-1 appeared to be a promising candidate under field conditions, with a 43% and 60% reduction of Striga emergence in pearl millet and sorghum fields, respectively. These findings confirm that the selected SL analogs appear to make promising candidates as simple suicidal agents both under laboratory and real African field conditions, which may support us to improve suicidal germination technology to deplete the Striga seed bank in African agriculture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available