4.5 Article

Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity

Journal

JOURNAL OF KING SAUD UNIVERSITY SCIENCE
Volume 34, Issue 3, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jksus.2022.101865

Keywords

Heavy metals; Environmental health; Toxicity; Nanotechnological approaches; Nanomedicine

Funding

  1. Research Center of Advanced Materials, King Khalid University, Saudi Arabia [RCAMS/KKU/G001/21]

Ask authors/readers for more resources

Heavy metals are toxic pollutants that can accumulate in the human body through bioaccumulation. Recent studies have explored treatment options for heavy metal removal, including nanotechnology-based methods, which offer advantages such as a broad linear range, low detection limits, and high sensitivity.
Heavy metals are well-known environmental pollutants owing to their toxicity, longevity in the atmosphere, and ability to accumulate in the human body via bioaccumulation. The pollution of terrestrial and aquatic ecosystems with toxic heavy metals is a major environmental concern that has consequences for public health. Most heavy metals occur naturally, but a few are derived from anthropogenic sources. Heavy metals are characterized by their high atomic mass and toxicity to living organisms. Most heavy metals cause environmental and atmospheric pollution, and may be lethal to humans. Heavy metals can become strongly toxic by mixing with different environmental elements, such as water, soil, and air, and humans and other living organisms can be exposed to them through the food chain. Plenty of experimental studies were performed to appraise the promising treatment options from natural products. Additionally, nanotechnology based treatment options are being constantly developed. As an emerging field, nanotechnology is making substantial advances in the analysis and removal of heavy metals from complicated matrices. Removal of heavy metal has been accomplished by the use of a variety of nanomaterials, including graphene and its derivatives, magnetic nanoparticles, metal oxide nanoparticles, and carbon nanotubes, to name a few. Using nanotechnology for heavy metal analysis and removal from food and water resources provides many benefits over traditional methods. These advantages include a broad linear range, low detection and quantification limits, a high sensitivity, and high selectivity. Therefore this review aimed to explore the environmental consequences of the heavy metals, toxicity to the human health, as well as novel therapeutics development from the natural resources. Additionally, nanotechnological and nanomedicinal applications to treat heavy metal toxicity are also highlighted in this review. (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available