4.7 Article

Metagenomic and Functional Characterization of Two Chilean Kefir Beverages Reveals a Dairy Beverage Containing Active Enzymes, Short-Chain Fatty Acids, Microbial β-Amyloids, and Bio-Film Inhibitors

Journal

FOODS
Volume 11, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/foods11070900

Keywords

kefir; probiotic; curli; beta-amyloids; biofilm inhibitor; short-chain fatty acids

Funding

  1. Chilean National Agency for Research and Development (ANID) [PAI79170114, FONDEF VIU17E0112]
  2. Centro de Micro-Bioinnovacion, Universidad de Valparaiso [DIUV-CIDI 4/2016]

Ask authors/readers for more resources

This study characterizes two Chilean kefir beverages, K02 and K03, through metagenomic and functional analysis. The results reveal the potential health benefits and biotechnological applications of these beverages, as well as their ability to inhibit biofilm formation of pathogenic bacteria.
Kefir beverage is a probiotic food associated with health benefits, containing probiotic microorganisms and biomolecules produced during fermentation. The microbial composition of these beverages varies among countries, geographical regions, and the substrates, therefore, the characterization of kefir beverages is of great relevance in understanding their potential health-promoting and biotechnological applications. Therefore, this study presents the metagenomic and functional characterization of two Chilean kefir beverages, K02 and K03, through shotgun and amplicon-based metagenomic, microbiological, chemical, and biochemical studies. Results show that both beverages' microbiota were mainly formed by Bacteria (>98%), while Eukarya represented less than 2%. Regarding Bacteria, the most abundant genera were Acetobacter (93.43% in K02 and 80.99% in K03) and Lactobacillus (5.72% in K02 and 16.75% in K03), while Kazachstania was the most abundant genus from Eukarya (42.55% and 36.08% in K02 and K03). Metagenomic analyses revealed metabolic pathways for lactose and casein assimilation, biosynthesis of health-promoting biomolecules, and clusters for antibiotic resistance, quorum sensing communication, and biofilm formation. Enzymatic activities, microbial beta-amyloids, and short-chain fatty acids (acetic acid and propionic acid) were also detected in these beverages. Likewise, both kefir beverages inhibited biofilm formation of the opportunistic pathogen Pseudomonas aeruginosa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available