4.7 Article

Optimum configuration of a metal foam layer for a fast thermal charging energy storage unit: A numerical study

Journal

JOURNAL OF ENERGY STORAGE
Volume 48, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.est.2021.103950

Keywords

Melting heat transfer; Thermal energy storage; Metal foam; Optimization

Categories

Funding

  1. Australian Government through University of New South Wales

Ask authors/readers for more resources

In this study, the melting heat transfer of capric acid Phase Change Material (PCM) in a thermal energy storage (TES) unit was numerically analyzed. The use of Cu nanoparticles and copper foam improved the charging time of the TES. Through optimization of the porous layer and the volume fraction of nanoparticles, a significant reduction in charging time was achieved.
The melting heat transfer of capric acid Phase Change Material (PCM) was numerically addressed in a channel shape Thermal Energy Storage (TES) unit. A combination of Cu nanoparticles and copper foam was used to improve the charging time of TES. A fixed amount of copper foam was applied to improve the heat transfer rate. The enthalpy-porosity approach, along with the finite element method, was used to simulate the free-convection melting heat transfer of composite PCM in the TES unit. Automatic time-step control and mesh adaptation technique were used to ensure the accuracy and convergence of the numerical solution. The porosity and the shape of the copper foam layer and volume fraction of nanoparticles were systematically optimized for minimum charging time using the Taguchi optimization approach. The results showed that a left right-hand triangle porous zone could lead to minimal charging time. The higher the porosity and volume fraction of nanoparticles, the lower the charging time. The combination of copper-foam, Cu nanoparticles, and optimum design of the porous layer reduced the melting time by three times. The optimal total charging time is reduced by 12.8% and 21.96% while changing the porous zone configuration from the RHT to REC and LHT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available