4.6 Review

Deep Learning in RNA Structure Studies

Journal

FRONTIERS IN MOLECULAR BIOSCIENCES
Volume 9, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmolb.2022.869601

Keywords

deep learning; RNA secondary structure; RNA tertiary structure; RNA structure prediction; RNA G-quadruplex; RNA-protein interaction

Ask authors/readers for more resources

The article discusses the successful applications of deep learning in solving RNA structure problems, including RNA structure prediction, non-canonical G-quadruplex, RNA-protein interactions, and RNA switches. It also provides a general guide to using deep learning for solving RNA structure problems.
Deep learning, or artificial neural networks, is a type of machine learning algorithm that can decipher underlying relationships from large volumes of data and has been successfully applied to solve structural biology questions, such as RNA structure. RNA can fold into complex RNA structures by forming hydrogen bonds, thereby playing an essential role in biological processes. While experimental effort has enabled resolving RNA structure at the genome-wide scale, deep learning has been more recently introduced for studying RNA structure and its functionality. Here, we discuss successful applications of deep learning to solve RNA problems, including predictions of RNA structures, non-canonical G-quadruplex, RNA-protein interactions and RNA switches. Following these cases, we give a general guide to deep learning for solving RNA structure problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available