4.7 Article

Hyperhomocysteinemia Increases Cortical Excitability and Aggravates Mechanical Hyperalgesia and Anxiety in a Nitroglycerine-Induced Migraine Model in Rats

Journal

BIOMOLECULES
Volume 12, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/biom12050735

Keywords

migraine; hyperhomocysteinemia; nitroglycerine; allodynia; anxiety; photophobia; cortical spreading depression; cortical excitability

Funding

  1. Russian Science Foundation [20-15-00100]
  2. Russian Science Foundation [20-15-00100] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

This study found that prenatal hyperhomocysteinemia increased the development of migraine-related symptoms and enhanced sensitivity to the migraine trigger nitroglycerin, suggesting that high levels of homocysteine may be a risk factor for migraine development.
Homocysteine is a sulfur-containing endogenous amino acid leading to neurotoxic effects at high concentrations. Population studies suggest an association between plasma homocysteine levels and the risk of migraine headaches. The aim of this study was to analyze the sensitivity of rats with prenatal hyperhomocysteinemia (hHCY) in respect of the development of behavioral correlates of headache and spreading cortical depolarization (CSD) in a migraine model induced by the administration of the nitric oxide (NO) donor nitroglycerin. Animals with hHCY were characterized by migraine-related symptoms such as mechanical hyperalgesia, high-level anxiety, photophobia, as well as an enhanced level of neuronal activity in the somatosensory cortex along with a lower threshold of CSD generation. Likewise, acute or chronic intermittent administration of nitroglycerin also induced the development of mechanical allodynia, photophobia and anxiety in control groups. However, these symptoms were more pronounced in rats with hHCY. Unlike hHCY, nitroglycerin administration did not affect the threshold of CSD generation, but like hHCY, increased the background neuronal activity in layers 2/3 and 4 of the cerebral cortex. The latter was more pronounced in animals with hHCY. Thus, the migraine profile associated with hHCY can be further exaggerated in conditions with enhanced levels of migraine triggering the gaseous transmitter NO. Our data are consistent with the view that high levels of plasma homocysteine can act as a risk factor for the development of migraine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available