4.8 Review

State-of-the-art review of advanced electrospun nanofib er yarn-base d textiles for biomedical applications

Journal

APPLIED MATERIALS TODAY
Volume 27, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apmt.2022.101473

Keywords

Electrospinning; Textile-forming technique; Nanoyarns; Tissue scaffolds; Wearable bioelectronics

Funding

  1. Shandong Science Foundation for Young Scholar [ZR2020QE090]
  2. Start-up Grant of Qingdao University

Ask authors/readers for more resources

The COVID-19 pandemic has increased the use of biotextiles in our daily lives. Nanofibrous materials, with their superior properties compared to microfibers, are being used to create nanofibrous biotextiles through innovative electrospinning techniques. This review covers the strategies for nanofiber fabrication and the applications of nanofibrous biotextiles in various biomedical fields.
The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 mu m). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 10 0 0 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use. (C) 2022 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available