4.5 Article

Effects of water-deficit stress and putrescine on performances, photosynthetic gas exchange, and chlorophyll fluorescence parameters of Salvia officinalis in two cutting times

Journal

FOOD SCIENCE & NUTRITION
Volume 10, Issue 5, Pages 1431-1441

Publisher

WILEY
DOI: 10.1002/fsn3.2741

Keywords

cutting; Pearson's correlation; potassium; stomatal conductance and sage

Funding

  1. Tarbiat Modares University

Ask authors/readers for more resources

The foliar application of putrescine has a positive effect on the growth and essential oil production of Salvia officinatis under optimum and water-deficit stress conditions. Water-deficit stress and the concentration of putrescine have significant effects on the physiological and yield parameters of Salvia officinatis.
A 2-year (2017-2018) field experiment was performed to specify if the foliar application of putrescine (PUT) under optimum and water-deficit stress (WDS) conditions would favorably affect leaf gas exchange, greenness, chlorophyll fluorescence parameters, pigments, sodium (Na), potassium (K), as well as yield and content of the essential oil (EO) relationships in Salvia officinatis L. (sage) in spring (cutting 1) and summer (cutting 2). Based on the results analysis of variance, the effects of WDS, PUT, and cutting time were significant for the dry weight, leaf area index (LAI), EO content, EO yield, chlorophyll (Chl) t, carotenoid, Na, and K of sage. According to regression results, the response of EO content, EO yield, non-photochemical quenching (NPQ), spad, Chl a, Chl t, K, and K/Na to WDS can be expressed by a quadratic model, indicating that they would attain their maximum in 75,5%, 34.86%, 38.33%, 84.13% 60%, 70%, 50.40%, and 40.28% available soil water depletion (ASWD), respectively. The response of dry weight, LAI, EO content, EO yield, Fv/Fm, spad, Phi psII, Chl a, Chl b, Chl t, carotenoid, K, and K/Na to PUT can be expressed by a quadratic model, showing that they would attain their most under 0.98, 1.14, 1.34, 1.16, 1.27, 1.18, 1.17, 1.25, 1.17, 1.27, 1.31, 1.21, and 1.19 mM of PUT, respectively. These findings suggest that, probably, the functions and structures of the photosynthetic system were further enhanced with PUT, thereby they can be promoting primary electron transfer in PSII. Also, stomatal and photosynthetic activity improved with increasing K levels with PUT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available