4.7 Article

Cyromazine Effects the Reproduction of Drosophila by Decreasing the Number of Germ Cells in the Female Adult Ovary

Journal

INSECTS
Volume 13, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/insects13050414

Keywords

insecticide; toxicology; oogenesis; reproduction; germline stem cells; cystoblasts; ecdysone signaling; RT-qPCR; hormone titer; immunofluorescence staining

Categories

Funding

  1. National Natural Science Foundation of China [31572335]

Ask authors/readers for more resources

Cyromazine reduces the number of germ cells in Drosophila melanogaster ovaries by interfering with the ecdysone signaling pathway, leading to a decrease in fecundity. The effects of cyromazine on reproduction were elucidated by counting germline stem cells and cystoblasts in adult ovaries, showing a significant decrease compared to the control group.
Simple Summary Cyromazine, an insect growth regulator, is used to control the Dipteran pest population. Previous findings observed that treatment with cyromazine increased the larval mortality, by interfering with the ecdysone signaling. In addition, the application of exogenous 20E significantly reduced the mortality caused by cyromazine. Many studies have also supported the role of ecdysone signaling in the maintenance of germline stem cells (GSCs), where mutations in ecdysone signaling-related genes significantly decreased the number of GSCs. However, to date, no study has reported the effect of cyromazine on the GSCs of Drosophila melanogaster. In the present study, we observed that cyromazine significantly reduced the number of both GSCs and cystoblasts (CBs) in the ovary of adult female. To further understand the effect of cyromazine on germ cells, we selected some key genes related to the ecdysone signaling pathway and evaluated their expression through RT-qPCR. Additionally, we measured the ecdysone titer from the cyromazine-treated ovaries. Our results indicated a significant decrease in the expression of ecdysone signaling-related genes and also in the ecdysone titer. These results further supported our findings that cyromazine reduced the number of germ cells by interfering with the ecdysone signaling pathway. In the present study, we observed a 58% decrease in the fecundity of Drosophila melanogaster, after treatment with the cyromazine. To further elucidate the effects of cyromazine on reproduction, we counted the number of both germline stem cells (GSCs) and cystoblasts (CBs) in the ovary of a 3-day-old adult female. The results showed a significant decrease in the number of GSCs and CBs as compared to the control group. The mode of action of cyromazine is believed to be through the ecdysone signaling pathway. To further support this postulate, we observed the expression of key genes involved in the ecdysone signaling pathway and also determined the ecdysone titer from cyromazine-treated ovaries. Results indicated a significant decrease in the expression of ecdysone signaling-related genes as compared to the control group. Furthermore, the titer of the ecdysone hormone was also markedly reduced (90%) in cyromazine-treated adult ovaries, suggesting that ecdysone signaling was directly related to the decrease in the number of GSCs and CBs. However, further studies are required to understand the mechanism by which cyromazine affects the GSCs and CBs in female adult ovaries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available