4.6 Article

An Efficient Adaptive Fuzzy Hierarchical Sliding Mode Control Strategy for 6 Degrees of Freedom Overhead Crane

Journal

ELECTRONICS
Volume 11, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/electronics11050713

Keywords

3D overhead crane; sliding mode control; fuzzy learning; 6 degrees of freedom

Funding

  1. Hanoi University of Industry [14 -2021-RD/HD-DHCN]

Ask authors/readers for more resources

This paper proposes a new approach for efficiently controlling a 6 DoF three-dimensional overhead crane. The approach utilizes hierarchical sliding mode control and fuzzy inference rule mechanism to adaptively estimate and infer unknown and uncertain parameters, resulting in efficient crane operations in real time.
The paper proposes a new approach to efficiently control a three-dimensional overhead crane with 6 degrees of freedom (DoF). Most of the works proposing a control law for a gantry crane assume that it has five output variables, including three positions of the trolley, bridge, and pulley and two swing angles of the hoisting cable. In fact, the elasticity of the hoisting cable, which causes oscillation in the cable direction, is not fully incorporated into the model yet. Therefore, our work considers that six under-actuated outputs exist in a crane system. To design an efficient controller for the 6 DoF crane, it first employs the hierarchical sliding mode control approach, which not only guarantees stability but also minimizes the sway and oscillation of the overhead crane when it transports a payload to a desired location. Moreover, the unknown and uncertain parameters of the system caused by its actuator nonlinearity and external disturbances are adaptively estimated and inferred by utilizing the fuzzy inference rule mechanism, which results in efficient operations of the crane in real time. More importantly, stabilization of the crane controlled by the proposed algorithm is theoretically proved by the use of the Lyapunov function. The proposed control approach was implemented in a synthetic environment for the extensive evaluation, where the obtained results demonstrate its effectiveness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available